
Ma/CS 6c Notes

Alexander S. Kechris
with Michael A. Shulman
and Andrés E. Caicedo

March 25, 2013

Contents

i

ii CONTENTS

Chapter 1

Propositional Logic

1.1 Introduction

A proposition is a statement which is either true or false.

Examples 1.1.1
“There are infinitely many primes”; “5 > 3”; and “14 is a square number”
are propositions. A statement like “x is odd,” however, is not a proposition
(but it becomes one when x is substituted by a particular number).

A propositional connective is a way of combining propositions so that the
truth or falsity of the compound proposition depends only on the truth or
falsity of the components. The most common connectives are:

connective symbol
not (negation) ¬
and (conjunction) ∧
or (disjunction) ∨
implies (implication) ⇒
iff (equivalence) ⇔

Notice that each connective has a symbol which is traditionally used
to represent it. This way we can distinguish between the desired precise
mathematical meaning of the connective (e.g. ¬) and the possibly vague
or ambiguous meaning of an english word (e.g. “implies”). The intended
mathematical meanings of the connectives are as follows:

1

2 CHAPTER 1. PROPOSITIONAL LOGIC

• “Not” (¬) is the only common unary connective: it applies to only
one proposition, and negates its truth value. The others are binary
connectives that apply to two propositions:

• A proposition combined with “and” (∧) is true only if both of its com-
ponents are true, while. . .

• A proposition combined with “or” (∨) is true whenever either or both
of its components are true. That is, ∨ is the so-called “inclusive or”.

• The “iff” (short for for “if and only if”) or equivalence connective (⇔)
is true whenever both of its components have the same truth value:
either both true or both false.

• The “implication” connective is the only common binary connective
which is not symmetric: p ⇒ q is not the same as q ⇒ p. p ⇒ q is
intended to convey the meaning that whenever p is true, q must also
be. So if p is true, p ⇒ q is true if and only if q is also true. If, on
the other hand, p is false, we say that p⇒ q is “vacuously” true. The
statement that p⇒ q does not carry any “causal” connotation, unlike
the English phrases we use (for lack of anything better) to pronounce
it (such as “p implies q” or “if p, then q”).

We can summarize the meanings of these connectives using truth tables :

p ¬p
T F
F T

p q p ∧ q p ∨ q p⇒ q p⇔ q
T T T T T T
T F F T F F
F T F T T F
F F F F T T

Examples 1.1.2
“¬2 = 2” is false;
“25 = 52 ∧ 6 > 5” is true;
“5 is even ∨ 16 is a square” is true;
“5 is odd ∨ 16 is a square” is true;

1.1. INTRODUCTION 3

“(the square of an odd number is odd)⇒(25 is odd)” is true;
“(the square of an odd number is even)⇒(25 is odd)” is true;
“(the square of an odd number is odd)⇒(10 is odd)”is false.

There are many different ways to express a compound statement, and
corresponding to these there are different ways to combine propositions using
these connectives which are equivalent : their truth values are the same for
any truth values of the original propositions. Here are some examples:

(i) The statements “The cafeteria either has no pasta, or it has no sauce”
and “The cafeteria doesn’t have both pasta and sauce” are two ways
to say the same thing. If p = “The cafeteria has pasta” and q = “The
cafeteria has sauce”, then this means that

(¬p) ∨ (¬q) and ¬(p ∧ q)

are equivalent. This is one of what are known as De Morgan’s Laws.

(ii) The law of the double negative says that ¬¬p and p are equivalent.
That is, if something is not false, it is true, and vice versa.

(iii) The statements “If it rained this morning, the grass is wet” and “If the
grass is dry, it didn’t rain this morning” are two more ways to say the
same thing. Now if p = “It rained this morning” and q = “The grass
is wet”, then this means that

(p⇒ q) and (¬q)⇒ (¬p)

are equivalent. The latter statement is called the contrapositive of the
first. Note that because of the law of the double negative, the first
statement is also equivalent to the contrapositive of the second.

(iv) Yet another way to say the same thing is “Either it did not rain this
morning, or the grass is wet.” That is, another proposition equivalent
to those above is

(¬p) ∨ q.

One consequence of this is that we could, if we wanted to, do without
the⇒ connective altogether. We will see more about this in section ??.

4 CHAPTER 1. PROPOSITIONAL LOGIC

(v) Two more related statements which are not equivalent to p⇒ q are the
converse, q ⇒ p (“If the grass is wet, it rained this morning”), and the
inverse, (¬p) ⇒ (¬q) (“If it didn’t rain this morning, the grass isn’t
wet”). There might, for example, be sprinklers that keep the grass wet
even when it doesn’t rain. The converse and inverse are contrapositives
of each other, however, so they have the same truth value.

In section ?? we will revisit this notion of “equivalence” in a formal con-
text.

1.2 Syntax of propositional logic

In order to rigorously prove results about the structure and truth of propo-
sitions and their connectives, we must set up a mathematical structure for
them. We do this with a formal language, the language of propositional logic,
which we will work with for the rest of the chapter.

1.2.A The Language of Propositional Logic

Definition 1.2.1 A formal language consists of a set of symbols together
with a set of rules for forming “grammatically correct” strings of symbols in
this language.

Definition 1.2.2 In the language of propositional logic we have the following
list of symbols:

(i) propositional variables : this is an infinite list p1, p2, p2, . . . of symbols.
We often use p, q, r, . . . to denote propositional variables.

(ii) symbols for the (common) propositional connectives : ¬,∧,∨,⇒,⇔.

(iii) parentheses : (,).

Definition 1.2.3 A string or word in a formal language is any finite se-
quence of the symbols in the language. We include in this the empty string
containing no symbols at all.

Example 1.2.4 The following are examples of strings in the language of
propositional logic:

1.2. SYNTAX OF PROPOSITIONAL LOGIC 5

p∨, pq ⇒, pqr, (p ∧ q), p)

Definition 1.2.5 If S = s1 . . . sn is a string with n symbols, we call n the
length of S and denote it by |S|. The length of the empty string is 0.

We will next specify the rules for forming “grammatically correct” strings
in propositional logic, which we call well-formed formulas (wff s) or just for-
mulas.

Definition 1.2.6 (Well-Formed Formulas)
(i) Every propositional variable p is a wff.

(ii) If A is a wff, so is ¬A.

(iii) If A,B are formulas, so are (A∧B), (A∨B), (A⇒ B), and (A⇔ B).

Thus a string A is a wff exactly when there is a finite sequence

A1, . . . , An

(called a parsing sequence) such that An = A and for each 1 ≤ i ≤ n, Ai is
either (1) a propositional variable, (2) for some j < i, Ai = ¬Aj, or (3) for
some j, k < i, Ai = (Aj ∗ Ak), where ∗ is one of ∧,∨,⇒,⇔.

Examples 1.2.7
(i) (p⇒ (q ⇒ r)) is a wff with parsing sequence

p, q, r, (q ⇒ r), (p⇒ (q ⇒ r)).

(Also note that

q, r, (q ⇒ r), p, (p⇒ (q ⇒ r))

is another parsing sequence, so parsing sequences are not unique.)

(ii) (¬(p ∧ q)⇔ (¬p ∨ ¬q)) is a wff with parsing sequence

p, q, (p ∧ q), ¬(p ∧ q), ¬p, ¬q, (¬p ∨ ¬q), (¬(p ∧ q)⇔ (¬p ∨ ¬q)).

(iii) p ⇒ qr,)p ⇔, ∨(q¬), and p ∧ q ∨ r are not wff, but to prove this is
rather more tricky. We will see some ways to do this in section ??.

6 CHAPTER 1. PROPOSITIONAL LOGIC

Remark. We have not yet assigned any “meaning” to any of the symbols
in our formal language. While we intend to interpret symbols such as ∨
and ⇒ eventually in a way analogous to the propositional connectives “or”
and “implies” in section ??, at present they are simply symbols that we are
manipulating formally.

1.2.B Induction on Formulas

We can prove properties of formulas by induction on the length of a formula.
Suppose Φ(A) is a property of a formula A. For example, Φ(A) could mean
“A has the same number of left and right parentheses.” If Φ(A) holds for
all formulas of length 1 (i.e. the propositional variables) and whenever Φ(A)
holds for all formulas A of length ≤ n, then it holds for all formulas of length
n + 1, we may conclude, by the principle of mathematical induction, that
Φ(A) holds for all formulas.

However, because of the way formulas are defined, it is most useful to use
another form of induction, sometimes called induction on the construction of
wff (or just induction on formulas):

Let Φ(A) be a property of formulas A. Suppose:

(i) Basis of the induction: Φ(A) holds, when A is a propositional variable.

(ii) Induction step: If Φ(A),Φ(B) hold for two formulas A,B, then

Φ(¬A),Φ((A ∗B))

hold as well, where ∗ is one of the binary connectives ∧,∨,⇒,⇔.

Then Φ(A) holds for all formulas A. We can prove the validity of this
procedure using standard mathematical induction, and the existence of a
parsing sequence for any wff.

Example 1.2.8 One can easily prove, using this form of induction, that
every formula A has the same number of left and right parentheses. This
result can be used to show that certain strings, for example)p ⇔, are not
wffs, because they have unequal numbers of left and right parentheses.

Example 1.2.9 If s1s2 . . . sn is any string, then an initial segment of it is
a string s1 . . . sm, where 0 ≤ m ≤ n (when m = 0, this means the empty
string). If m < n we call this a proper initial segment.

1.2. SYNTAX OF PROPOSITIONAL LOGIC 7

Again we can easily prove by induction on the construction of wff that a
nonempty proper initial segment of a formula either consists of a string of ¬’s
or else has more left than right parentheses. (To see some examples, consider
¬¬(p ⇒ q), ((p ⇒ (q ∧ p)) ⇒ ¬p).) Another easy induction shows that
no formula can be empty or just a string of ¬’s, so using also the previous
example, no proper initial segment of a wff is a wff.

This can also be used to show certain strings (for example, p ⇒ qr) are
not wffs, as they contain proper initial segments that are wffs (in the example,
p). Similar methods can be used for other non-wffs.

1.2.C Unique Readability

While parsing sequences are not unique, as mentioned in examples ??, there
is a sense in which both alternative parsing sequences offered are “the same”:
they break the wff down in the same way, to the same components, albeit in
a different order. Using induction on formulas, we can prove that this will
always be the case. This is called unique readability.

Theorem 1.2.10 (Unique Readability Theorem) Every wff is in exact-
ly one of the forms:

(i) p (i.e., a propositional variable);

(ii) ¬A for A a uniquely determined wff;

(iii) (A ∗ B), for uniquely determined wff’s A,B and uniquely determined
∗ ∈ {∧,∨,⇒,⇔}.

Proof. By induction on the construction of formulas, it is straightforward
that any formula must be of one of these forms. To prove uniqueness first
notice that no wff can be in more than one of the forms (i), (ii), (iii). And
obviously no two propositional variables are the same, and if ¬A = ¬B, then
A = B.

So it is enough to show that in case (iii), if (A ∗ B) = (C ◦ D), for
∗, ◦ ∈ {∧,∨,⇒,⇔}, then A = C,B = D and ∗ = ◦. First notice that, by
eliminating the left parenthesis, we have that A ∗B) = C ◦D). From this it
follows that either A is an initial segment of C or vice versa. If A 6= C, then
one of A,C is a proper initial segment of the other, which is impossible, as
they are both formulas. So we must have A = C. Thus ∗B) = ◦D) and so
∗ = ◦ and B = D. a

8 CHAPTER 1. PROPOSITIONAL LOGIC

Definition 1.2.11 In form (ii) we call ¬ the main connective and in (iii)
we call ∗ the main connective. (Thus the main connective is the one applied
last.)

Example 1.2.12 In ((p ⇒ (q ⇒ p)) ⇒ q) the main connective is the third
“⇒” (from left to right).

Given a formula A, it might be hard to recognize immediately which is
the main connective. Consider for example the following formula:

(((((p ∨ ¬q) ∨ ¬r) ∧ ((¬p ∨ (s ∨ ¬r)) ∧ ((q ∨ s) ∨ p)))∧
(((¬q ∨ ¬r) ∨ s) ∧ (s ∨ (¬r ∨ q)))) ∧ ((p ∨ (¬r ∨ s)) ∧ (s ∨ ¬r)))

(it turns out to be the 5th “∧”). There is however an easy algorithm for
determining the main connective: In the formula (A∗B) the main connective
∗ is the first binary connective (from left-to-right) such that in the string
preceding it the number of left parentheses is exactly one more than the
number of right parentheses.

1.2.D Recursive Definitions

Often we will want to define a function or characteristic of wffs, and the most
natural way to do it is to break down the formula into simpler formulas one
step at a time. To make this rigorous, we can use the unique readability
theorem to justify the following principle of definition by recursion on the
construction of formulas :

Let X be a set and

f : {p1, p2, . . . } → X

f¬ : X → X

f∧, f∨, f⇒, f⇔ : X2 → X

be given functions. Then there is a unique function g from the set of all
formulas into X such that

g(p) = f(p)

g(¬A) = f¬(g(A))

g((A ∗B)) = f∗(g(A), g(B)), ∗ ∈ {∧,∨,⇒,⇔}.

1.2. SYNTAX OF PROPOSITIONAL LOGIC 9

Without unique readability, the existence and uniqueness of g would be
called into question: if there were two different ways of breaking down a
formula, then the corresponding compositions of the fs might yield different
values of g for the same formula. But now that we know unique readibility,
g is well-defined and unique.

Examples 1.2.13
(i) Let

L(p) = 1

L(¬A) = L(A) + 1

L((A ∗B)) = L(A) + L(B) + 3.

Then it is easy to see that L(A) = |A| = the length of A.

(ii) Let

C(P) = 0

C(¬A) = C(A) + 1

C((A ∗B)) = C(A) + C(B) + 1.

Then C(A) = the number of connectives in A.

(iii) Let p be a propositional variable and P a formula. We define for each
formula A the formula g(A) = A[p/P] as follows:

g(p) = P,

g(q) = q if q 6= p,

g(¬A) = ¬g(A)

g((A ∗B)) = (g(A) ∗ g(B)).

Then it is easy to see that A[p/P] is the formula obtained by substi-
tuting every occurence of p in A by P .

For example, if A = (¬p⇒ (q ⇒ p)) and P = (r ∨ q), then

A[p/P] = (¬(r ∨ q)⇒ (q ⇒ (r ∨ q))).

(iv) The parse tree TA of a formula A is defined recursively as follows:

10 CHAPTER 1. PROPOSITIONAL LOGIC

Tp : p

T¬A :

TA

¬
¬A

T(A∗B) :

TA TB

(A ∗B)

∗

For example, if A = (¬(p ∧ q)⇔ (¬p ∨ ¬q)), then its parse tree is

p q

(p ∧ q)
∧

¬

¬(p ∧ q)

p

¬

¬p

q

¬

¬q

(¬p ∨ ¬q)
∨

A
⇔

The parse tree, starting now from the bottom up, gives us various ways
of constructing a parsing sequence for the formula; for example:

p, q, (p ∧ q), ¬(p ∧ q), ¬p, ¬q, (¬p ∨ ¬q), (¬(p ∧ q)⇔ (¬p ∨ ¬q)).

By unique readability, all parsing sequences can be obtained in this
manner. Thus the parse tree extracts the “common part” out of each
parsing sequence.

1.2. SYNTAX OF PROPOSITIONAL LOGIC 11

(v) The formulas occurring in the parse tree of a formula A are called the
subformulas of A. These are the formulas that arise in the construction
of A. If we let subf(A) denote the set of subformulas of A, then subf
can be defined by the following recursion:

subf(p) = {p}
subf(¬A) = subf(A) ∪ {¬A}

subf
(
(A ∗B)

)
= subf(A) ∪ subf(B) ∪ {(A ∗B)}.

1.2.E Recognizing Formulas

We will next discuss an algorithm for verifying that a given string is a formula.

Algorithm 1.2.14 Given a string S, let x be a propositional variable not
occurring in S and let S(x) the string we obtain from S by substituting every
propositional variable by x.

For any string T containing only the variable x, let T ′ be the string
obtained from T as follows: If T contains no substring (i.e. a string contained
in T as a consecutive sequence of symbols) of the form ¬x, (x∧x), (x∨x), (x⇒
x), (x⇔ x), then T ′ = T . Otherwise substitute the leftmost occurence of any
one of these forms by x, to obtain T ′. Notice that if T 6= T ′, then |T ′| < |T |.

Now starting with an arbitrary string S, form first S(x), and then define
recursively S0 = S(x), Sn+1 = S ′n. This process stops when we hit n0 for
which Sn0+1 = S ′n0

= Sn0 , i.e., Sn has no substring of the above form. This
must necessarily happen since otherwise we would have |S0| > |S1| > . . . (ad
infinitum), which is impossible.

We now claim that if Sn0 = x, then S is a formula, otherwise it is not.

Examples 1.2.15
(i) ((p⇒ (q ∨ ¬p)⇒ (r ∨ (¬s⇒ t)))) = S

((x⇒ (x ∨ ¬x)⇒ (x ∨ (¬x⇒ x)))) = S(x) = S0

((x⇒ (x ∨ x)⇒ (x ∨ (¬x⇒ x)))) = S1

((x⇒ x⇒ (x ∨ (¬x⇒ x)))) = S2

((x⇒ x⇒ (x ∨ (x⇒ x)))) = S3

((x⇒ x⇒ (x ∨ x))) = S4

((x⇒ x⇒ x)) = S5 = S6

12 CHAPTER 1. PROPOSITIONAL LOGIC

So S is not a wff.

(ii) ((p⇒ ¬q)⇒ (p ∨ (¬r ∧ s))) = S

((x⇒ ¬x)⇒ (x ∨ (¬x ∧ x))) = S(x) = S0

((x⇒ x)⇒ (x ∨ (¬x ∧ x))) = S1

(x⇒ (x ∨ (¬x ∧ x))) = S2

((x⇒ (x ∨ (x ∧ x))) = S3

((x⇒ (x ∨ x)) = S4

(x⇒ x) = S5

x = S6 = S7

So S is a wff.

We will now prove the correctness of this algorithm in two parts: first,
that it recognizes all wffs, and second, that it recognizes only wffs.

Part I. If S = A is a wff, then this process stops at x.

Proof of part I. First notice that S is a wff iff S(x) is a wff. (This can be
easily proved by induction on the construction of formulas.)

So if A is a wff, so is B = A(x). Thus it is enough to show that if
we start with any wff B containing only the variable x and we perform
this process, we will end up with x. For this it is enough to show that for
any such formula B, B′ is also a formula. Because then when the process
B0 = B,B1, . . . , Bn0 stops, we have that Bn0 is a formula containing only
the variable x and B′n0

= Bn0 , i.e., Bn0 contains no substrings of the form
¬x, (x ∧ x), (x ∨ x), (x⇒ x), (x⇔ x), therefore it must be equal to x.

We can prove that for any formula B, B′ is a formula, by induction on
the construction of B. If B = x, then B′ = B = x. If B = ¬C, then either
C = x and B′ = x, or else B′ = ¬C ′, since C 6= x implies that C cannot
start with x. If B = (C ∗D), then, unless C = D = x, in which case B′ = x,
either B′ = (C ′ ∗D) or B′ = (C ∗D′). a

Part II. If, starting from S, this process terminates at x, then S is a
formula.

Proof of part II. Again we can assume that we start with a string S0

containing only the variable x and show that if S0, S1, . . . , Sn0 = S ′n0
= x, for

some n0, where Sn+1 = S ′n, then S0 is a formula. To see this notice that Sn0 is
a formula and Sn−1 is obtained from Sn by substituting some occurrence x by

1.3. POLISH AND REVERSE POLISH NOTATION 13

a formula. So working backwards, and using the fact that if in a wff we sub-
stitute an occurrence of a variable by a formula we still get a formula (a fact
which is easy to prove by induction), we see that Sn0 , Sn0−1, Sn0−2, . . . , S1, S0

are all formulas. a

1.3 Polish and Reverse Polish notation

We will now describe two different ways of writing formulas in which paren-
theses can be avoided. These methods are often better suited to computer
processing, and many computer programs store formulas internally in one of
these notations, even if they use standard notation for input and output.

1.3.A Polish Notation

We define a new formal language as follows:

(i) The symbols are the same as before, except that there are no paren-
theses, i.e.:

p1, p2, . . . ,¬,∧,∨,⇒,⇔

(ii) We have the following rules for forming grammatically correct formulas,
which we now call Polish wff or just P-wff or P-formulas :

(a) Every propositional variable p is a P-wff;

(b) If A is a P-wff, so is ¬A.

(c) If A,B are P-wff, so is ∗AB, where ∗ ∈ {∧,∨,⇒,⇔}

Remark. Polish notation is named after the Polish logician Lukasiewicz
who first introduced it, although he used N , K, A, C, and E in place of ¬,
∧, ∨, ⇒, and ⇔ respectively.

Example 1.3.1

⇒⇒ s¬t¬ ∨ p ∧ ¬qs

is a P-wff as the following parsing sequence demonstrates

q, ¬q, s, ∧¬qs, p, ∨p ∧ ¬qs, ¬ ∨ p ∧ ¬qs, t, ¬t, ⇒ s¬t, ⇒⇒ s¬t¬ ∨ p ∧ ¬qs.

14 CHAPTER 1. PROPOSITIONAL LOGIC

In ordinary notation this P-wff corresponds to the wff:

((s⇒ ¬t)⇒ ¬(p ∨ (¬q ∧ s))).

As with regular formulas, we have unique readability.

Theorem 1.3.2 (Unique Readability of P-wff) Every P-wff A is in ex-
actly one of the forms,

(i) p

(ii) ¬B

(iii) ∗BC, where ∗ ∈ {∧,∨,⇒,⇔}, for uniquely determined P-wff B,C.

Proof. Clearly the only thing we have to prove is that if B,C,B′, C ′ are
P-wff and BC = B′C ′, then B = B′, C = C ′. If BC = B′C ′ then one of
B,B′ is an initial segment of the other, so it is enough to prove the following
lemma:

Lemma 1.3.3 No nonempty proper initial segment of a P-wff is a P-wff.

Proof of Lemma ??. We define a weight for each symbol as follows:

w(p) = 1

w(¬) = 0

w(∗) = −1 if ∗ ∈ {∧,∨,⇒,⇔}.

Then we define the weight of any string S = s1s2 . . . sn, by

w(S) =
n∑
i=1

w(si).

For example, w(∧ ⇒ s¬pq) = 1. It is easy to show by induction on the
construction of a P-wff that if A is a P-wff, then w(A) = 1.

We now define a terminal segment of a string S = s1 . . . sn to be any
string of the form

smsm+1 . . . sn (1 ≤ m ≤ n)

1.3. POLISH AND REVERSE POLISH NOTATION 15

or the empty string. The concatenation of strings S1, . . . , Sk is the string
S1S2 . . . Sk, which consists of the symbols of S1 followed by those of S2, and
so on.

Claim. Any nonempty terminal segment of a P-wff is a concatenation of
P-wff.

Proof of Claim. Let A be a P-wff. We prove that any nonempty terminal
segment of A is a concatenation of P-wff, by induction on the construction
of A. If A = p this is obvious. If A = ¬B, then any nonempty terminal
segment of A is either A itself or a nonempty terminal segment of B, so it
is a concatenation of P-wff, by induction hypothesis. Finally, if A = ∗BC,
then any terminal segment of A is either A itself or the concatenation of a
terminal segment of B with C or else a terminal segment of C, so again, by
induction hypothesis, we are done.

Example. Consider the indicated terminal segment of the given P-wff:

⇒⇒ s¬t¬ ∨ p ∧ ¬qs︸ ︷︷ ︸
It is the concatenation of the following P-wff:

s︸︷︷︸ ¬t︸︷︷︸ ¬ ∨ p ∧ ¬qs︸ ︷︷ ︸
We can now complete the proof of the lemma (and hence the theorem):

Suppose A is a P-wff and B is a P-wff which is a proper initial segment
of A, so that A = BC, with C a nonempty terminal segment of A. Then we
have

w(A) = w(B) + w(C).

But w(A) = w(B) = 1 and, as C = C1 . . . Cn for some P-wwf C1, . . . , Cn,

w(C) =
n∑
i=1

w(Ci) ≥ 1,

which is a contradiction. a

Remark. From the preceding, it follows that any nonempty terminal seg-
ment of a P-wff is the concatenation of a unique sequence of P-wff.

16 CHAPTER 1. PROPOSITIONAL LOGIC

Algorithm 1.3.4 There is a simple algorithm for verifying that a given
string is a P-wff. Given a string S = s1s2 . . . sn compute

w(sn), w(sn) + w(sn−1), w(sn) + w(sn−1) + w(sn−2), . . . ,

w(sn) + w(sn−1) + · · ·+ w(s1) = w(S).

Then S is a P-wff exactly when all these sums are ≥ 1 and w(S) = 1.

The correctness of this algorithm is a homework problem (Assignment
#1).

1.3.B Reverse Polish notation

We can also define, in an obvious way, the Reverse Polish notation by defin-
ing a new formal language in which rules (b), (c) in the definition of P-wff
are changed to: A → A¬ and A,B → AB∗. We refer to grammatically
correct formulas in this formal language as Reverse Polish wff, RP-wff, or
RP-formulas.

Example 1.3.5 st¬ ⇒ pq¬s ∧ ∨¬ ⇒ is a RP-wff with parsing sequence

s, t, t¬, st¬ ⇒, p, q, q¬, q¬s∧, pq¬s ∧ ∨, pq¬s ∧ ∨¬, st¬ ⇒ pq¬s ∧ ∨¬ ⇒.

(This corresponds to example ??.)

Exactly as before, we can prove a unique readability theorem and devise
a recognition algorithm, simply by reversing everything. We will not do this
explicitly. Instead, we will discuss algorithms for translating formulas from
Reverse Polish notation to ordinary notation and vice versa.

Algorithm 1.3.6 (Translating a RP-wff to an ordinary formula)
We will describe it by an example, from which it is not hard to formulate the
general algorithm:

Consider

st¬ ⇒ pq¬s ∧ ∨¬ ⇒

Scan from left to right until the first connective is met. Here it is ¬. Replace
t¬ by ¬t:

s¬t⇒ pq¬s ∧ ∨¬ ⇒

1.3. POLISH AND REVERSE POLISH NOTATION 17

Again scan from left to right until the first unused connective is met. Here
it is ⇒. Replace s¬t⇒ by (s⇒ ¬t).

(s⇒ ¬t)pq¬s ∧ ∨¬ ⇒

Scan from left to right until the first unused connective is met. Here it is ¬.
Replace q¬ by ¬q:

(s⇒ ¬t)p¬qs ∧ ∨¬ ⇒

Scan from left to right until the first unused connective is met. Here it is ∧.
Replace ¬qs∧ by (¬q ∧ s):

(s⇒ ¬t)p(¬q ∧ s) ∨ ¬ ⇒

Scan from left to right until the first unused connective is met. Here it is ∨.
Replace p(¬q ∧ s)∨ by (p ∨ (¬q ∧ s)):

(s⇒ ¬t)(p ∨ (¬q ∧ s))¬ ⇒

Scan from left to right until the first unused connective is met. Here it is ¬.
Replace (p ∨ (¬q ∧ s))¬ by ¬(p ∨ (¬q ∧ s)):

(s⇒ ¬t)¬(p ∨ (¬q ∧ s))⇒

Scan from left to right until the first unused connective is met. Here it is⇒.
Replace (s⇒ ¬t)¬(p ∨ (¬q ∧ s))⇒ by

((s⇒ ¬t)⇒ ¬(p ∨ (¬q ∧ s))).

This is the final result.

If A is a RP-wff, denote by O(A) the wff obtained in this fashion. Then
it is not hard to see that O(A) satisfies the following recursive definition:

(i) O(p) = p

(ii) O(A¬) = ¬O(A)

(iii) O(AB∗) = (O(A) ∗O(B)).

Algorithm 1.3.7 (Translating a wff to a RP-wff) The following anal-
ogous recursive definition will translate a wff A to a RP-wff RP (A):

18 CHAPTER 1. PROPOSITIONAL LOGIC

(i) RP (p) = p

(ii) RP (¬A) = RP (A)¬

(iii) RP ((A ∗B)) = RP (A)RP (B)∗.

It is not hard to see by induction that these processes are inverses of
each other: i.e., for each RP-wff A, RP (O(A)) = A and for each wff B
O(RP (B)) = B.

We will now describe a way of implementing the recursive definition A 7→
RP (A) by a “stack algorithm”. Visualize the given wff A as being the input
string :

s1 s2 · · · sn

We also have a stack string :

...

This is initially empty and at various stages of the algorithm we will either
put something on the top of the string or else remove something from the
top of the string.

Finally we will have an output string which will eventually be RP (A). In
the beginning it is also empty:

· · ·

Before we describe the algorithm, let us notice that if A is a wff, say A =
s1s2 . . . sn, and for some 1 ≤ i < n, si = ¬ but si−1 6= ¬, then there is a unique
wff E = si . . . sm, m ≤ n, of the form E = ¬ . . .¬p or E = ¬¬ . . .¬(C ∗D).
This is because any wff is of the form p,¬ . . .¬p, ¬¬ . . .¬(C ∗D) or (C ∗D).
Notice that in case E = ¬¬ . . .¬(C ∗D), we can find the end of E by starting
from the beginning ¬ until left and right parentheses balance.

We now describe the algorithm:
First scan A from left to right and whenever a ¬ is met which is not

preceded by ¬ and it starts a wff of the form E = ¬ . . .¬︸ ︷︷ ︸
n

(C ∗ D) or E =

¬¬ . . .¬︸ ︷︷ ︸
n

p as above, add to the right of it n copies of a new symbol, say A,

1.3. POLISH AND REVERSE POLISH NOTATION 19

to obtain EAA · · · A︸ ︷︷ ︸
n

. After this was done for all such occurrences of ¬ in

A we obtain a new string, say A′ (which might contain many occurrences of
this new symbol A).

We now start scanning A′ from left to right. If we see (do nothing.
If we see p, we add p to the right of the output string. If we see ¬ or
∗ ∈ {∧,∨,⇒,⇔}, we add this symbol to the top of the stack. If we see)
or A we remove the top symbol in the stack and add it to the right of the
output string. When we have scanned all of A′ this process stops and the
output string is RP (A).

Example 1.3.8 Consider the wff

((s⇒ ¬t)⇒ ¬(p ∨ ¬(¬q ∧ s))) = A

for which the RP -wff is

st¬ ⇒ pq¬s ∧ ¬ ∨ ¬ ⇒= RP (A)

.

First we form A′:

((s⇒ ¬t A)⇒ ¬(p ∨ ¬(¬q A ∧s) A) A)

In the stack below, we represent top to bottom as right to left. Therefore
the top of the stack, where we push and pop symbols, is on the right.

input stack output
(− −
(− −
s − s
⇒ ⇒ s
¬ ⇒ ¬ s
t ⇒ ¬ st
A ⇒ st¬
) − st¬ ⇒
⇒ ⇒ st¬ ⇒
¬ ⇒ ¬ st¬ ⇒

20 CHAPTER 1. PROPOSITIONAL LOGIC

input stack output
(⇒ ¬ st¬ ⇒
p ⇒ ¬ st¬ ⇒ p
∨ ⇒ ¬∨ st¬ ⇒ p
¬ ⇒ ¬ ∨ ¬ st¬ ⇒ p
(⇒ ¬∨ ¬ st¬ ⇒ p
¬ ⇒ ¬ ∨ ¬¬ st¬ ⇒ p
q ⇒ ¬∨ ¬¬ st¬ ⇒ pq
A ⇒ ¬∨ ¬ st¬ ⇒ pq¬
∧ ⇒ ¬ ∨ ¬∧ st¬ ⇒ pq¬
s ⇒ ¬∨ ¬∧ st¬ ⇒ pq¬s

) ⇒ ¬∨ ¬ st¬ ⇒ pq¬s∧
A ⇒ ¬∨ st¬ ⇒ pq¬s ∧ ¬
) ⇒ ¬ st¬ ⇒ pq¬s ∧ ¬∨
A ⇒ st¬ ⇒ pq¬s ∧ ¬ ∨ ¬
) − st¬ ⇒ pq¬s ∧ ¬ ∨ ¬ ⇒

We will now verify the correctness of this algorithm, by induction on the
construction of formulas. We will show that if we start with A and then
construct A′ and apply this stack algorithm but with the stack containing
some string S (not necessarily empty) and the output some string T (not
necessarily empty), then we finish with the stack string S and output string
T R̂P (A), whereˆmeans concatenation.

This is obvious if A = p. Assume it holds for B and consider A = ¬B.
Then notice that A′ = ¬B′ A. Starting the algorithm from A′ and stack
string S and output string T , we first add ¬ to the top of S. Then we
perform the algorithm on B′ and stack string S¬, output T . This finishes by
producing stack string S¬ and output T R̂P (B). Then since the last symbol
of A′ is A, we get stack string S and output string T R̂P (B)¬ = T R̂P (A).

Finally assume it holds for B,C and consider A = (B ∗ C). Then A′ =
(B′ ∗ C ′). Starting the algorithm from A′ and stack string S, output T ,
we first have (, which does nothing. Then we have the algorithm on B′

on stack string S, output T which produces T R̂P (B) and stack string S.
Then ∗ is put on top of the stack and the algorithm is applied to C ′ with
stack string S∗ and output T R̂P (B) to produce stack string S∗ and output

1.4. ABBREVIATIONS 21

T R̂P (B)̂RP (C). Finally we have) which produces stack string S and output
T R̂P (B) R̂P (C)∗ = T R̂P (A). a

1.4 Abbreviations

Sometimes in practice, in order to avoid complicated notation, we adopt
various abbreviations in writing wff, if they don’t cause any confusion.

For example, we usually omit outside parentheses: We often write A∧B
instead of (A ∧B) or (A ∧B) ∨ C instead of ((A ∧B) ∨ C), etc.

Also we adopt an order of preference between the binary connectives,
namely

∧,∨,⇒,⇔

where connectives from left to right bind closer, i.e., ∧ binds closer than
∨,⇒,⇔; ∨ binds closer than ⇒,⇔; and ⇒ binds closer than ⇔. So if we
write p∧ q∨ r we really mean ((p∧ q)∨ r) and if we write p⇒ q∨ r we really
mean (p⇒ (q ∨ r)), etc.

Finally, when we have repeated connectives, we always associate paren-
theses to the left, so that if we write A∧B∧C we really mean ((A∧B)∧C),
and if we write A⇒ B ⇒ C ⇒ D we really mean (((A⇒ B)⇒ C)⇒ D).

1.5 Semantics of Propositional Logic

We now want to ask the question, “When is a proposition true or false?”
Specifically, if we know whether each atomic proposition is true or false,
what is the truth value of a compound proposition? We will consider two
truth values: T or 1 (true), and F or 0 (false).

1.5.A Valuations

Definition 1.5.1 A truth assignment or valuation consists of a map

ν : {p1, p2, . . . } → {0, 1}

assigning to each propositional variable a truth value.

Given such a ν we can extend it in a unique way to assign an associated
truth value ν∗(A) to every wff A, by the following recursive definition:

22 CHAPTER 1. PROPOSITIONAL LOGIC

(i) ν∗(p) = ν(p).

(ii) ν∗(¬A) = 1− ν∗(A).

(iii) For the binary connectives, the rules are:

ν∗((A ∧B)) =

1 if ν∗(A) = ν∗(B) = 1

0 otherwise

= ν∗(A) · ν∗(B)

ν∗((A ∨B)) =

1 if ν∗(A) = 1 or ν∗(B) = 1

0 if ν∗(A) = ν∗(B) = 0

= 1− (1− ν∗(A)) · (1− ν∗(B))

ν∗((A⇒ B)) = ν∗((¬A ∨B))

=

0 if ν∗(A) = 1, ν∗(B) = 0,

1 otherwise

= 1− ν∗(A) · (1− ν∗(B))

ν∗((A⇔ B)) =

1 if ν∗(A) = ν∗(B)

0 otherwise

= ν∗(A) · ν∗(B) + (1− ν∗(A)) · (1− ν∗(B))

For simplicity, we will write ν(A) instead of ν∗(A), if there is no danger
of confusion.

These rules can be also represented by the following truth tables :

A B ¬A A ∧B A ∨B A⇒ B A⇔ B
0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 0 0 0 1 0 0
1 1 0 1 1 1 1

Note the similarity with the truth tables presented in section ??. We are now
formalizing our intuitive sense of what the propositional connectives should
“mean.”

1.5. SEMANTICS OF PROPOSITIONAL LOGIC 23

Definition 1.5.2 For each wff A, its support, supp(A), is the set of propo-
sitional variables occurring in it.

Example 1.5.3

supp(((p ∧ q)⇒ (¬r ∨ p))︸ ︷︷ ︸
A

) = {p, q, r}. (∗)

Thus we have, by way of recursive definition,

supp(p) = {p}
supp(¬A) = supp(A)

supp((A ∗B)) = supp(A) ∪ supp(B).

The following is easy to check:

Proposition 1.5.4 If supp(A) = {q1, . . . , qn} and ν is a valuation, then
ν(A) depends only on ν(q1), . . . , ν(qn); i.e., if µ is a valuation, and µ(qi) =
ν(qi) for i = 1, . . . , n, then µ(A) = ν(A).

For instance, in example ?? above, ν(A) depends only on ν(p), ν(q), and
ν(r).

We can visualize the calculation of ν(A) in terms of the parse tree TA as
follows, where we illustrate the general idea by an example.

Example 1.5.5 Consider A = ((p⇒ ¬q)⇒ (q ∨ p)) and its parse tree. Let
ν(p) = 0, ν(q) = 1. Then we can find the truth value of each node of the
tree working upwards. So ν(A) = 1.

p (0)

q (1)

¬

¬q (0)

p⇒ ¬q (1)

⇒

q (1) p (0)

q ∨ p (1)

∨

A (1)

⇒

24 CHAPTER 1. PROPOSITIONAL LOGIC

We also have the following algorithm for evaluating ν(A), given the val-
uation ν to all the propositional variables in the support of A.

Algorithm 1.5.6 First replace each propositional variable p in A by its
truth value (according to ν), ν(p). Then scanning from left to right find the
first occurence of a string of the form ¬i, (i ∧ j), (i ∨ j), (i⇒ j), (i⇔ j),
where i, j ∈ {0, 1}, and replace it by its value according to the truth table
(e.g., replace ¬0 by 1, (0 ∧ 1) by 0, etc.). Repeat the process until the value
ν(A) is obtained.

Example 1.5.7 A, ν as in example ??. Then we first obtain ((0 ⇒ ¬1) ⇒
(1∨ 0)). Next we have successively ((0⇒ 0)⇒ (1∨ 0)), (1⇒ (1∨ 0)), (1⇒
1), 1 = ν(A).

It is not hard to prove by induction on A that this algorithm is correct,
i.e., produces always ν(A).

Given a valuation ν we can of course define in a similar way the truth
value ν(A) for any P-wff or RP-wff A. We will now describe a stack algorithm
for calculating the truth value for RP-wff.

Algorithm 1.5.8 We start with a RP-wff A and a valuation ν to all the
propositional variables in the support of A. The stack is empty in the begin-
ning.

We scan A from left to right. If we see a propositional variable p, we add
to the top of the stack ν(p). If we see ¬, we replace the top of the stack a
(which is either 0 or 1) by 1− a. If we see ∗ ∈ {∧,∨,⇒,⇔}, we replace the
top two elements of the stack b (= top), a (= next to top) by the value given
by the truth table for ∗ applied to the truth values a, b (in that order). The
truth value in the stack, when we finish scanning A, is ν(A).

Example 1.5.9 Let A be the RP-wff

pqp¬∨ ⇒ rs¬u⇒ ∨ ⇒ .

(in ordinary notation this is (p ⇒ (q ∨ ¬p)) ⇒ (r ∨ (¬s ⇒ u)) and ν(p) =
1, ν(q) = 1, ν(r) = 0, ν(s) = 1, ν(u) = 1. Then by applying the algorithm
we have (once again, top to bottom on the stack is represented as right to
left):

1.5. SEMANTICS OF PROPOSITIONAL LOGIC 25

input stack
p 1
q 11
p 111
¬ 110
∨ 11
⇒ 1
r 10
s 101
¬ 100
u 1001
⇒ 101
∨ 11
⇒ 1

Again it is easy to show by induction that this algorithm is correct, i.e.,
it always produces ν(A). The appropriate statement we must prove, by
induction on the construction of A, is that if we start this algorithm with
input a RP-wff A and stack S, we end up by having stack Sν(A). (Here S
is a string of 0’s and 1’s.)

1.5.B Models and Tautologies

Definition 1.5.10 If ν is a valuation and A a wff, we say that ν satisfies or
models A if ν(A) = 1.

That is, ν models A if A is true under the truth values that ν assigns to
the propositional variables. We use the notation

ν |= A

to denote that ν models A. We also write

ν 6|= A

26 CHAPTER 1. PROPOSITIONAL LOGIC

if ν does not satisfy or model A, i.e., if ν(A) = 0. Notice that

ν |= ¬A iff ν 6|= A

ν |= (A ∧B) iff ν |= A and ν |= B

ν |= (A ∨B) iff ν |= A or ν |= B

ν |= (A⇒ B) iff either ν 6|= A or else ν |= B

ν |= (A⇔ B) iff (ν |= A and ν |= B) or (ν 6|= A and ν 6|= B).

Definition 1.5.11 A wff A is a tautology (or valid) iff for every valuation ν
we have ν |= A. So A is a tautology if it is true independently of the truth
assignments to its propositional variables.

Examples 1.5.12
(i) ¬(A ∧ B) ⇔ (¬A ∨ ¬B) is a tautology. This is an expression of one

of De Morgan’s laws, which we first saw in section ??. The other
“equivalences” we discussed there can also be expressed as tautological
formulas: A⇔ ¬¬A for the law of the double negative, and so on.

(ii) A∨ (B ∧C)⇔ (A∨B)∧ (A∨C) is a tautology. This is an equivalence
we did not discuss: it says that ∨ distributes over ∧. It is also true
that ∧ distributes over ∨, i.e. A∧ (B ∨C)⇔ (A∧B)∨ (A∧C) is also
a tautology.

(iii) (p ⇒ q) ⇒ (q ⇒ p) is not a tautology, since it is falsified by the
valuation ν(p) = 0, ν(q) = 1. We saw in section ?? that the truth of an
implication is generally unrelated to the truth of its converse, but this
formula claims that the converse is true whenever the original formula
is true.

Definition 1.5.13 A wff A is satisfiable iff there is some valuation ν such
that ν |= A, i.e. A has at least one model. Otherwise, we say that A is
unsatisfiable or contradictory.

Clearly A is contradictory iff ¬A is a tautology, and vice versa.

Example 1.5.14 (p⇒ q) is satisfiable (e.g. by the valuation ν1(p) = ν1(q) =
1) and its negation is also satisfiable (by the valuation ν2(p) = 1, ν2(q) = 0).

To check whether a given formula is a tautology or not, we can write
down its truth table and check that it gives always 1’s, for any value of the
propositional variables.

1.5. SEMANTICS OF PROPOSITIONAL LOGIC 27

Example 1.5.15 Consider (p⇒ q)⇔ (¬q ⇒ ¬p).

p q ¬p ¬q p⇒ q ¬q ⇒ ¬p (p⇒ q)⇔ (¬q ⇒ ¬p)
0 1 1 0 1 1 1
0 0 1 1 1 1 1
1 1 0 0 1 1 1
1 0 0 1 0 0 1

This procedure requires 2n many entries if the wff A contains n proposi-
tional variables, so it has “exponential complexity.” No substantially more
efficient algorithm is known. The possibility of improving the “exponential”
to “polynomial” complexity is a famous open problem in theoretical com-
puter science known as the “P = NP problem”, that we will discuss in
Chapter 3.

We can extend the definition of satisfiability to sets containing more than
one formula. Clearly the only interesting notion is that of simultaneous
satisfiability; i.e. whether all formulas are satisfied by the same valuation.

Definition 1.5.16 If S is any set of wff (finite or infinite) and ν is a valua-
tion, we say that ν satisfies or models S, in symbols

ν |= S

if ν |= A for every A ∈ S, i.e., ν models all wff in S. If there is some
valuation satisfying S we say that S is satisfiable (or has a model).

Examples 1.5.17
(i) S = {(p1 ∨ p2), (¬p2 ∨ ¬p3), (p3 ∨ p4), (¬p4 ∨ ¬p5), . . . } is satisfiable,

with model the valuation:

ν(pi) =

{
1 if i is odd;

0 if i is even.

(ii) S = {q ⇒ r, r ⇒ p, ¬p, q} is not satisfiable.

(iii) If S = {A1, . . . , An} is finite, then S is satisfiable iff A1 ∧ · · · ∧ An is
satisfiable.

28 CHAPTER 1. PROPOSITIONAL LOGIC

1.5.C Logical Implication and Equivalence

Definition 1.5.18 Let now S be any set of wff and A a wff. (View S as
a set of hypotheses and A as a conclusion.) We say that S (tauto)logically
implies A if every valuation that satisfies S satisfies also A (i.e., any model
of S is also a model of A).

If S logically implies A, we write

S |= A

(and if it does not, S 6|= A). We use the same symbol as for models of a
formula, because the notions are compatible. If S = ∅, we just write |= A.
This simply means that A is a tautology (it is true in all valuations).

Examples 1.5.19
(i) (Modus Ponens) {A,A⇒ B} |= B.

(ii) {A,A⇒ (B ∨ C), B ⇒ D, C ⇒ D} |= D.

(iii) p⇒ q 6|= q ⇒ p

(iv) {p1 ⇒ p2, p2 ⇒ p3, p3 ⇒ p4, . . . } |= p1 ⇒ pn (for any n)

(v) If S = {A1, . . . , An} is finite, then S = {A1, . . . , An} |= A iff A1 ∧ · · · ∧
An |= A iff |= (A1 ∧ · · · ∧ An)⇒ A.

(vi) S |= (A⇒ B) iff S ∪ {A} |= B.

(vii) S |= A iff S ∪ {¬A} is not satisfiable.

Example 1.5.20 Consider the following argument (from Mendelson’s book
“Introduction to Mathematical Logic”)

If capital investment remains constant, then government spend-
ing will increase or unemployment will result. If government
spending will not increase, taxes can be reduced. If taxes can
be reduced and capital investment remains constant, then un-
employment will not result. Hence, government spending will
increase.

To see whether this conclusion logically follows from the premises, represent:

1.5. SEMANTICS OF PROPOSITIONAL LOGIC 29

p : “capital investment remains constant”
q : “government spending will increase”
r : “unemployment will result”
s : “taxes can be reduced”

Then our premises are

S = {p⇒ (q ∨ r), ¬q ⇒ s, s ∧ p⇒ ¬r}

Our conclusion is
A = q.

So we are asking if
S |= q.

This is false since the truth assignment ν(p) = 0, ν(q) = 0, ν(r) = 1, ν(s) = 1
makes S true but q false. So the argument above is not valid.

Remark. Note that if S ⊆ S̃ and S |= A, then S̃ |= A. Also, if S |= A for
all A ∈ S ′, and S ′ |= B, then S |= B.

Definition 1.5.21 Two wff A,B are called (logically) equivalent, in symbols

A ≡ B,

if A |= B and B |= A, i.e. A⇔ B is a tautology.

Notice that logical equivalence is an equivalence relation, i.e.,

A ≡ A

A ≡ B implies B ≡ A

A ≡ B, B ≡ C imply A ≡ C.

We consider equivalent wff as semantically indistinguishable. However, in
general equivalent formulas are different syntactically. By that we mean that
they are distinct strings of symbols, e.g. (p⇒ q) and (¬q ⇒ ¬p).

Once again, we see the same equivalences that we mentioned in section ??,
such as A ≡ ¬¬A and ¬(A ∧B) ≡ (¬A ∨ ¬B). Here are a couple more:

Examples 1.5.22
(i) (A⇔ B) ≡ ((A ∧B) ∨ (¬A ∧ ¬B))

30 CHAPTER 1. PROPOSITIONAL LOGIC

(ii) ((A ∧B)⇒ C) ≡ ((A⇒ C) ∨ (B ⇒ C))

Recommendation. Read Appendix ??, which lists various useful tautolo-
gies and equivalences. Verify that they are indeed tautologies and equiva-
lences. You will often need to use some of them in homework assignments.

Here are some useful facts about logical equivalence.

(i) Let A be a wff containing the propositional variables q1, . . . , qn, and let
A1, . . . , An be arbitrary wff. If A is a tautology, so is

A[q1/A1, q2/A2, . . . , qn/An],

the wff obtained by substituting qi by Ai (1 ≤ i ≤ n) in A.

(ii) If A is a wff, B a subformula of A and B′ a wff such that B ≡ B′,
and we obtain A′ from A by substituting B by B′, then A ≡ A′. This
can be easily proved by induction on the construction of A. Thus we
can freely substitute equivalent formulas (as parts of bigger formulas)
without affecting the truth value.

Example. A = (¬(p∧q)⇒ (q∨r)), B = ¬(p∧q), B′ = (¬p∨¬q), A′ =
((¬p ∨ ¬q)⇒ (q ∨ r)).

The De Morgan Laws, which we have seen before, are the equivalences

¬(p ∧ q) ≡ (¬p ∨ ¬q)
¬(p ∨ q) ≡ (¬p ∧ ¬q)

By the first fact above, we can conclude that ¬(A ∧ B) ≡ (¬A ∨ ¬B),
¬(A∨B) ≡ (¬A∧¬B) for any wff A,B. The De Morgan laws also have the
following generalization:

Proposition 1.5.23 (General De Morgan Laws) Let A be a wff cont-
aining only the connectives ¬,∧,∨. Let A∗ be obtained from A by substituting
each propositional variable p occurring in A by ¬p and replacing ∧ by ∨ and
∨ by ∧. Then

¬A ≡ A∗.

1.6. TRUTH FUNCTIONS 31

Example 1.5.24

¬((p ∧ q) ∨ (¬r ∧ p)) ≡ ((¬p ∨ ¬q) ∧ (¬¬r ∨ ¬p))
≡ ((¬p ∨ ¬q) ∧ (r ∨ ¬p)), since ¬¬r ≡ r.

Proof. The proof of the General De Morgan’s Laws will be left for Home-
work Assignment #2.

Augustus de Morgan was born in 1806 in Madura, India, and died in 1871
in London. De Morgan lost the sight on his right eye as a boy. His family
moved to England when he was 10. At 1823, he refused to take a theological
test, and as a result Trinity College (Cambridge) only gave him a BA instead
of an MA. In 1828 he was appointed Professor at the new University College
(London); he was the first mathematics professor of the college. De Morgan
was first to formally define mathematical induction (1838). He was a friend
of Charles Babbage, the creator of the first “difference engine” (1819–22), a
predecessor of the modern computer. This led to his interest in logic as an
algebra of identities and to his introduction of what are now known as De
Morgan’s laws.

“A dry dogmatic pedant I fear is Mr. De Morgan, notwithstanding his
unquestioned ability.” Thomas Hirst.

1.6 Truth Functions

We can consider a formula (or even an equivalence class of logically equiv-
alent formulas) to define a function. Its inputs are the truth values of the
propositional variables in its support (that is, a valuation, or at least the
relevant part of a valuation), and its output is the truth value of the formula
(that is, whether the valuation models the formula). We can also go the
other way: starting from any such function, we will construct a propositional
formula which describes it.

1.6.A Truth Functions

Definition 1.6.1 For n ≥ 1, an n-ary truth function (also called a Boolean
function) is any map

f : {0, 1}n → {0, 1}.

32 CHAPTER 1. PROPOSITIONAL LOGIC

By convention we also have two “0-ary” truth functions, namely the constants
0 and 1.

An n-ary truth function can be represented by a truth table as follows:

x1 x2 · · · xn f(x1, . . . , xn)
0 0 · · · 0 f(0, . . . , 0)
...

...
. . .

...
...

i1 i2 · · · in f(i1, . . . , in)
...

...
. . .

...
...

1 1 · · · 1 f(1, . . . , 1)

This table has 2n rows, allowing for all possibilities for the vector (i1, . . . , in),
where each ik is 0 or 1. Since for each of these 2n rows the values of f are
arbitrary (can be either 0 or 1), altogether there are 22n

possible n-ary truth
functions. We will look at some or all of these, for some small values of n.

n = 0. As mentioned above, there are two “0-ary” truth functions: the
binary constants 0 and 1.

n = 1. There are 22 = 4 unary truth functions:

x f1(x) f2(x) f3(x) f4(x)
0 0 0 1 1
1 0 1 0 1

So f1(x) = 0 (constant), f4(x) = 1 (constant), f2(x) = x (identity), f3(x) =
1− x (corresponds to negation).

n = 2. There are 222
= 16 binary truth functions. For some examples,

notice that each binary connective (via its truth table) gives rise to a cor-
responding binary truth function. For example, ∧ gives rise to f(x, y) =
x ∧ y = x · y (i.e. multiplication modulo two). Conversely, we can view each
binary truth function as defining a binary connective, so we have altogether
16 binary connectives. (In a similar way, we can also view n-ary truth func-
tions as n-ary connectives.) We have seen the standard binary connectives:
∧,∨,⇒,⇔. Here are a few others that play an important role in various
ways.

1.6. TRUTH FUNCTIONS 33

x y x+ y
0 1 1
0 0 0
1 1 0
1 0 1

This corresponds to binary addition, i.e., addition in Z2 (the integers modulo
2). We see that x+y = (x∧¬y)∨(y∧¬x). This connective is called exclusive
or and sometimes also symmetric difference.

x y x ↓ y
0 0 1
0 1 0
1 0 0
1 1 0

Notice that x ↓ y = ¬(x ∨ y). ↓ is called nor.

x y x|y
0 0 1
0 1 1
1 0 1
1 1 0

Notice that x|y = ¬(x ∧ y). | is called nand or Sheffer stroke.

Remark. Notice that some of the 16 binary connectives are degenerate,
i.e., depend on only one (or none) of the arguments, e.g.,

x y f(x, y) = ¬x
0 1 1
0 0 1
1 1 0
1 0 0

In fact, every 0-ary connective (i.e. constant) gives rise to a (constant) binary
connective, and every unary connective gives rise to two (degenerate) binary
connectives (f(x, y) = g(x) and f(x, y) = g(y)). (These are not all distinct,
of course, since some unary connectives are themselves degenerate.) More
generally, if n > m, then any m-ary connective gives rise to degenerate n-ary
connectives.

34 CHAPTER 1. PROPOSITIONAL LOGIC

n = 3. There are 223
= 256 ternary connectives. These are too many to

list, but an interesting example is the “if x then y, else z” connective, whose
value is y if x = 1 and z if x = 0. Another one is the majority connective:

maj(x, y, z) =

{
1 if the majority of x, y, z is 1

0 otherwise

For each wff A we indicate the fact that A contains only propositional
variables among p1, . . . , pn by writing A(p1, . . . , pn). This simply means that
supp(A) ⊆ {p1, . . . pn}. It does not mean that A contains all of the proposi-
tional variables p1, . . . , pn.

Definition 1.6.2 For each wff A(p1, . . . , pn), we define an n-ary truth func-
tion fnA : {0, 1}n → {0, 1} by

fnA(x1, . . . , xn) = (the truth value of A given by the valuation ν(pi) = xi).

In other words, fA is the truth function corresponding to the truth table of
the wff A.

Examples 1.6.3
(i) For any binary connective ∗, if A = (p1 ∗ p2), then fA is the truth

function f∗ corresponding to ∗. Similarly, if A = ¬p1, then fA = f¬,
and so on.

(ii) If A = ((p1 ∧ p2) ∨ (¬p1 ∧ p3)), then fA is the truth function of the
“if. . . then. . . else. . . ” connective.

Remark. Strictly speaking, each wff A gives rise to infinitely many truth
functions fnA: one for each n ≥ nA, where nA is the least number m for which
supp(A) ⊆ {p1, . . . , pm}. This is the same situation that we face when we
have a polynomial, like x + y, which we can view as defining a function of
two variables x, y, but also as a function of three variables x, y, z, which only
depends on x, y, etc. However when the n is understood or irrelevant we just
write fA.

Note that by definition

A ≡ B iff fA = fB.

The main fact about truth functions is the following:

1.6. TRUTH FUNCTIONS 35

Theorem 1.6.4 Every truth function is realized by a wff containing only
¬,∧,∨. That is, if f : {0, 1}n → {0, 1} with n ≥ 1, there is a wff

A(p1, . . . , pn)

containing only ¬,∧,∨ such that

f = fA (= fnA).

Proof. If f is identically 0, take A = (p1 ∧ ¬p1).
Otherwise, for each entry s = (x1, . . . , xn) ∈ {0, 1}n in the truth table of

f , introduce the wff

As = ε1p1 ∧ ε2p2 ∧ · · · ∧ εnpn
where

εi =

{
nothing if xi = 1

¬ if xi = 0
.

Example. s = (1, 0, 1)→ As = p1 ∧ ¬p2 ∧ p3.
Notice that fAs(x1, . . . , xn) = 1, but fAs(x

′
1, . . . , x

′
n) = 0 if (x′1, . . . , x

′
n) 6=

(x1, . . . , xn). Enumerate in a sequence s1, . . . , sm (m ≤ 2n) all s ∈ {0, 1}n
such that f(s) = 1 (and there is at least one such) and put

A = As1 ∨ As2 ∨ · · · ∨ Asm .

Then fA(s) = 1 iff at least one of fAsi
(s) = 1 iff s ∈ {s1, . . . , sm} iff f(s) = 1,

so fA = f . a

Example 1.6.5 Suppose that f is given by the following truth table.

x1 x2 x3 f(x1, x2, x3)
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Then f is realized by the wff

A = (¬p1 ∧ p2 ∧ ¬p3) ∨ (p1 ∧ ¬p2 ∧ ¬p3) ∨ (p1 ∧ p2 ∧ p3).

36 CHAPTER 1. PROPOSITIONAL LOGIC

Corollary 1.6.6 Any wff is equivalent to a wff containing only ¬,∧ and to
a wff containing only ¬,∨. So any truth function can be realized by a wff
containing only ¬,∧ or only ¬,∨.

Proof. Given a wffA(p1, . . . , pn), consider the truth function fA : {0, 1}n →
{0, 1} and let A′(p1, . . . , pn) be a wff containing only ¬,∧,∨ such that

fA = fA′ ,

i.e.
A ≡ A′.

We can now systematically eliminate ∨ by using the equivalence

C ∨D ≡ ¬(¬C ∧ ¬D) (1.1)

to obtain an equivalent formula A′′ ≡ A′ containing only ¬,∧. Similarly
using

C ∧D ≡ ¬(¬C ∨ ¬D) (1.2)

we can find an equivalent formula A′′′ ≡ A′ containing only ¬,∨. a
Remark. Another way to prove this corollary is by using the equivalences
(??) and (??) above, as well as

(C ⇒ D) ≡ (¬C ∨D)

(C ⇔ D) ≡ (¬C ∨D) ∧ (¬D ∨ C)

to systematically eliminate all connectives except ¬,∨ or ¬,∧.

Example 1.6.7 Suppose A is

((p⇒ q) ∧ ¬(r ⇒ s)) ∨ (s ∨ p),

and we want to find an equivalent wff involving only ¬,∧. We have the
following equivalent wffs, successively:

((p⇒ q) ∧ ¬(r ⇒ s)) ∨ (s ∨ p) = A,

((¬p ∨ q) ∧ ¬(¬r ∨ s)) ∨ (s ∨ p),
(¬(p ∧ ¬q) ∧ (r ∧ ¬s)) ∨ ¬(¬s ∧ ¬p),
¬(¬(¬(p ∧ ¬q) ∧ (r ∧ ¬s))) ∧ (¬s ∧ ¬p)).

1.6. TRUTH FUNCTIONS 37

Remark. If by a (logic) circuit we understand any device which accepts n
binary inputs and produces a binary output, then the previous results show
that any circuit can be built out of (not, and) or (not, or) gates only.

-
-

-

-

1.6.B Completeness of Binary Connectives

Definition 1.6.8 A set of connectives C ⊆ {¬,∧,∨,⇒,⇔} is called com-
plete if any wff is equivalent to a wff whose only connectives are in C.

Examples 1.6.9
(i) {¬,∧}, {¬,∨} are complete sets, as seen in corollary ??.

(ii) {¬,⇒} is complete, because (A ∨B) ≡ (¬A⇒ B).

(iii) {¬,⇔} is not complete: To see this notice that if A(p1, p2) is any wff
which only contains ¬,⇔ and a, b, c, d are the values of A under the
four possible truth assignments to the variables p1, p2, then viewing
a, b, c, d as members of Z2 we claim that

a+ b+ c+ d = 0.

We can prove this by induction on the construction of A. If A = p1

or A = p2, then this is true since a + b + c + d = 1 + 1 + 0 + 0 = 0.
If A = ¬B and a, b, c, d are the values of B, then the values of A are
1− a, 1− b, 1− c, 1− d and their sum is

4− (a+ b+ c+ d) = 0− 0 = 0.

Finally if A = (B ⇔ C) and a1, b1, c1, d1 and a2, b2, c2, d2 are the
corresponding values of B,C (i.e., corresponding to the same truth
assignments to the variables p1, p2), then the truth values of A are
a1 ⇔ a2 = 1− (a1 +a2), 1− (b1 + b2), 1− (c1 + c2), 1− (d1 +d2), whose
sum is

4− (a1 + b1 + c1 + d1 + a2 + b2 + c2 + d2) = 0− 0 = 0.

38 CHAPTER 1. PROPOSITIONAL LOGIC

Since the values of p1 ∧ p2 are 1, 0, 0, 0 whose sum is 1, it follows that
p1∧p2 cannot be equivalent to any wff built using only ¬,⇔, so {¬,⇔}
is not complete.

Recall that we actually have 16 binary connectives. We can introduce a
symbol for each one of them (as we have already done for the most common
ones) and build up formulas using them. So we can generalize the preceding
definition to say that any set C of binary connectives is complete if any wff
is equivalent to one in which the only connectives are contained in C. (In
terms of truth functions this simply means that every truth function can be
expressed as a composition of the truth functions contained in C. To see this
notice that if ∗ is a binary connective, then fA∗B(x̄) = ∗(fA(x̄), fB(x̄)).)

A single binary connective ∗ is complete if C = {∗} is complete, i.e., every
wff is equivalent to one using only ∗. It turns out that the nand (|), and nor
(↓) connectives are complete. This is easily seen, because

¬p ≡ p|p ≡ p ↓ p
(p ∨ q) ≡ (p|p)|(q|q)
(p ∧ q) ≡ (p ↓ p) ↓ (q ↓ q).

We will see in Assignment #3 that these are the only complete binary con-
nectives.

Remark. In terms of circuits this implies that they can all be built using
only nor or nand gates:

nand gate nor gate

-

-
-

-

-
-

1.6.C Normal Forms

Definition 1.6.10 A wff A is in disjunctive normal form (dnf) if

A = A1 ∨ · · · ∨ An,

with
Ai = `

(i)
1 ∧ · · · ∧ `

(i)
ki
,

and each `
(i)
j a literal, i.e., p or ¬p for some propositional variable p. We call

Ai the disjuncts of A.

1.6. TRUTH FUNCTIONS 39

Examples 1.6.11
(i) p, p ∧ q, (p ∧ q) ∨ (¬r ∧ s), p ∨ ¬q ∨ (s ∧ ¬t ∧ u) are in dnf.

(ii) p⇒ q and (p ∨ (q ∧ r)) ∧ s are not in dnf.

Theorem 1.6.12 For every wff A we can find a wff B in dnf such that
A ≡ B.

Proof. This follows from the proof of Theorem ??. If A = A(p1, . . . , pn)
and A is contradictory, take B = p1 ∧ ¬p1. Otherwise, let

X = {(ε1, . . . , εn) : the truth assigment pi 7→ εi satisfies A} ⊆ {0, 1}n,

and let

B =
∨

(ε1,...,εn)∈X

n∧
i=1

εipi,

where εipi = pi if ε1 = 1 and ¬pi if εi = 0. (The notation
∧n
i=1, like

∑n
i=1,

means to connect the specified values with ∧, as i runs from 1 to n.) Then
B is the desired formula. a

Definition 1.6.13 A wff A is in conjunctive normal form (cnf) iff

A = A1 ∧ · · · ∧ An,

with
Ai = `

(i)
1 ∨ · · · ∨ `

(i)
ki

and each `
(i)
j a literal. We call Ai the conjuncts of A.

Example 1.6.14

p, p ∨ q, (p ∨ q) ∧ (¬r ∨ s), p ∧ ¬q ∧ (s ∨ ¬t ∨ u) are in cnf.

p⇒ q, (p ∨ (q ∧ r)) ∧ s, and (p ∧ q) ∨ r are not in cnf.

Corollary 1.6.15 For every wff A we can find a wff B in cnf such that
A ≡ B.

Proof. Apply the preceding theorem to ¬A to find a wff B′ in dnf such
that

¬A ≡ B′,

40 CHAPTER 1. PROPOSITIONAL LOGIC

so

A ≡ ¬B′.

Now

B′ =
n∨
i=1

ki∧
j=1

`
(i)
j ,

so, by de Morgan,

¬B′ ≡
n∧
i=1

ki∨
j=1

¬`(i)
j .

If some `
(i)
j is of the form ¬p replace ¬`(i)

j by p to obtain ˜̀(i)
j . Otherwise let

˜̀(i)
j = `

(i)
j . Thus

¬B′ ≡
n∧
i=1

ki∨
j=1

˜̀(i)
j = B,

where each ˜̀(i)
j is a literal, so B is in cnf and A ≡ B. a

Remark. Given a wff A in dnf it is easy to check if it is satisfiable or not:
If

A =
n∨
i=1

ki∧
j=1

`
(i)
j ,

then A is satisfiable iff one of the disjuncts is satisfiable, which is true iff there
is 1 ≤ i ≤ n so that {`(i)

j : 1 ≤ j ≤ ki) does not contain both a propositional
variable and its negation. Similarly given a wff A in cnf, it is easy to check if
it is a tautology or not: it is a tautology iff all the conjuncts are tautologies,
which happens iff for all 1 ≤ i ≤ n, {`(i)

j : 1 ≤ i ≤ ki} contains both a
propositional variable and its negation.

Examples 1.6.16
(i) (p ∧ q) ∨ (p ∧ ¬r ∧ s) ∨ (p ∧ s ∧ ¬p) is satisfiable.

(ii) (p ∨ q) ∧ (r ∨ s ∨ ¬r) ∧ (t ∨ p ∨ ¬s ∨ ¬t) is not a tautology.

This is one reason that cnf and dnf are useful forms to be able to put a
wff in. However it is not known how to transform efficiently any given wff A
to an equivalent one in dnf (or cnf).

1.7. KÖNIG’S LEMMA AND APPLICATIONS 41

1.7 König’s Lemma and Applications

We will now temporarily take a break from propositional logic and discuss a
basic result in combinatorics, which we will use in the next section to prove
an important result about propositional logic known as the Compactness
Theorem.

1.7.A Graphs and Trees

Definition 1.7.1 A (nondirected, simple) graph consists of a set of vertices
V and a set E ⊆ V 2 of edges with the property that

(x, y) ∈ E iff (y, x) ∈ E,

(x, x) 6∈ E.

If e = (x, y) ∈ E is an edge, we say that x, y are adjacent.

We represent a graph geometrically by drawing points for vertices and
connecting adjacent vertices with lines, as shown.

x y

Example 1.7.2 This is a graph with 4 vertices a, b, c, d and 5 edges (a, b),
(b, c), (c, d), (a, d), (a, c). (Formally, E has size 10.)

d

c

a

b

Definition 1.7.3 A path from x ∈ V to y ∈ V (x 6= y) is a finite sequence
x0 = x, x1, . . . , xn = x of distinct successively adjacent vertices (i.e., each
(xi, xi+1) is an edge).

x0 = x x1 x2 xn−1 xn = y

Definition 1.7.4 A graph is connected if for every x, y ∈ V (x 6= y) there is
a path from x to y.

42 CHAPTER 1. PROPOSITIONAL LOGIC

Definition 1.7.5 A graph is a tree if for any x 6= y there is a unique path
from x to y.

Examples 1.7.6
Here are some examples of graphs that are and are not trees.

not a tree tree not a tree
(not connected) (has loops)

Equivalently, a connected graph is a tree exactly when it contains no
loops (or cycles), where a loop is a sequence of successively adjacent vertices
x0, x1, . . . , xn with x0 = xn and x0, . . . , xn−1 distinct.

Example 1.7.7 Here is a loop:

x0 = x5

x1

x2

x3

x4

Definition 1.7.8 A rooted tree is a tree with a distinguished vertex called
the root.

The root is usually denoted by v0. For every vertex v 6= v0 there is a
unique path v0, v1, . . . , vn = v.

v0

v1

v2

v3

1.7. KÖNIG’S LEMMA AND APPLICATIONS 43

Definition 1.7.9 The parent of v is the vertex vn−1 and the children of v
are all the vertices v′ such that v0, v1, . . . , vn, vn+1 = v′ is the unique path
from v0 to v′.

parent of v

v

︸ ︷︷ ︸
children of v

1.7.B König’s Lemma

Definition 1.7.10 A tree is finite splitting if every vertex has only finitely
many children (thus only finitely many adjacent vertices).

.

finite splitting not finite splitting

Definition 1.7.11 An infinite branch of a rooted tree is an infinite sequence
v0, v1, v2, . . . , where vn+1 is a child of vn.

v5
...

v4

v3

v2

v1

v0

44 CHAPTER 1. PROPOSITIONAL LOGIC

For example, if T is the infinite binary tree (in which each vertex has
exactly two children), then the infinite branches correspond exactly to the
infinite binary sequences a1, a2, a3, a4, . . . (each ai = 0 or 1), where we inter-
pret 0 as going left and 1 as going right.

...
...

00

...
...

01

0

...
...

10

...
...

11

1

Theorem 1.7.12 (König’s Lemma) If a finite splitting tree has infinitely
many vertices, then it has an infinite branch.

Note that this fails if the tree is not finite splitting. Consider the following
counterexample:

. . .

Proof. Let T be the given tree. For each vertex v of the tree, let Tv be
the subtree of T consisting of v, the children of v, the grandchildren of v,
etc., i.e., consisting of v and all its descendents, and all the edges connecting
them. Denote by V the set of vertices of T , and by Vv the set of vertices of
Tv.

v Tv

v0

1.7. KÖNIG’S LEMMA AND APPLICATIONS 45

We will use the following version of the Pigeon Hole Principle: If X is an
infinite set and X = X1 ∪ · · · ∪Xn, then some Xi, 1 ≤ i ≤ n, is infinite.

Now, since T is finite splitting, v0 has only finitely many children, say
c1, . . . , cn. Then V = {v0}∪Vc1∪· · ·∪Vcn , so some Vci1 is infinite. Put v1 = ci1 .
Let then d1, . . . , dm be the children of v1. We have Vv1 = {v1}∪Vd1∪· · ·∪Vdm ,
so one of the Vdi

, say Vdi2
is infinite. Put v2 = di2 , etc. Proceeding this way,

we define an infinite path v0, v1, v2, . . . (so that for each n, Vvn is infinite).a

1.7.C Domino Tilings

As an application of König’s Lemma, we will consider the following tiling
problem in the plane.

Definition 1.7.13 A domino system consists of a finite set D of domino
types, where a domino type is a unit square with each side labeled.

Examples 1.7.14
Here are some example domino types:

a
b
a

c
a
b
c

d
1

0
2

3

Definition 1.7.15 A tiling of the plane by D consists of a filling-in of the
plane by dominoes of type in D, so that adjacent dominoes have matching
labels at the sides where they touch. (Dominoes cannot be rotated.)

Example 1.7.16 Here is a tiling of the plane:

b
b
a

c
a
b
c

d
c
d
b

a

c
c
d

b
d
d
b

b
b
a
c

d

For this tiling, D contains at least

b
b
a

c
a
b
c

d
c
d
b

a
c
c
d

b
d
d
b

b
b
a
c

d

46 CHAPTER 1. PROPOSITIONAL LOGIC

Problem. Given D, can one tile the plane by D?

Examples 1.7.17
(i) Suppose D consists of

3
1

1
2

1
4

2
5

2
7

3
8

6
2

4
1

4
5

5
4

5
8

6
7

Then D can tile the plane, by repeating the following pattern:

3
1

1
2

1
4

2
5

2
7

3
8

6
2

4
1

4
5

5
4

5
8

6
7

(ii) Suppose, on the other hand, that D consists of

1
3

2
1

2
2

3
2

3
1

1
2

This D cannot tile the plane, as the following forced configuration
shows:

1
3

2
1

2
2

3
2

3
1

1
2

1
3

2
1

Starting from the 1
3

2
1 on the right, we are forced to form this config-

uration, which cannot be completed to a tiling. Starting from 3
1

1
2 in

the middle, we are again forced to this configuration. Finally, starting

from 2
2

3
2 on the left we are again forced to this configuration.

We can similarly define what it means to tile a rectangular finite region
of the plane, like

1.7. KÖNIG’S LEMMA AND APPLICATIONS 47

or an infinite region, like

We just impose no restriction on the boundaries. Here is then a surprising
fact:

Theorem 1.7.18 For any given (finite) set D of domino types, D can tile
the plane iff D can tile the upper right quadrant.

Proof. We will actually show that the following are equivalent:

(i) D can tile the plane.

(ii) D can tile the upper right quadrant.

(iii) For each n = 1, 2, . . . , D can tile the n× n square.

It is clear that (i) implies (ii) implies (iii), so it is enough to show that (iii)
implies (i).

So assume that for each n = 1, 2, . . . , D can tile the n × n square. We
build a tree as follows:

The children of the root v0 are all possible tilings of the 1× 1 square, i.e.,
all domino types in D. They are only finitely many. Let a be a typical one
of them. Then its children are all the tilings of the 3 × 3 square consistent
with a (viewed as being in the middle of the 3 × 3 square). Let b a typical
one of them. Then its children are the tilings of the 5× 5 square consistent
with b, etc.

48 CHAPTER 1. PROPOSITIONAL LOGIC

This tree is finite splitting, since for each fixed tiling of a (2n+1)×(2n+1)
square there are only finitely many ways of extending it to a tiling of the (2n+
3)× (2n+ 3) square, since D is finite. The tree is also infinite, since for each
n ≥ 1 there is some tiling of the (2n−1)×(2n−1) square, say un, and if we let
u1, u2, . . . un−1 be the tilings of the middle 1×1, 3×3, . . . , (2n−3)×(2n−3)
squares contained in un, then u0, u1, . . . , un are all vertices in this tree, so
for each n the tree has at least n vertices, i.e., it is infinite. So by König’s
Lemma there is an infinite branch of the tree, say u0, u1, u2, . . . un, . . . This
gives, in an obvious way, a tiling of the plane by D. a

Remark. It can be proved that there is no algorithm to check whether a
given D can tile the plane or not.

This has the following interesting implication. A periodic tiling by D
consists of a tiling of an (n×m)-rectangle, so that the top and bottom labels
match and so do the right and left ones, so by repeating it we can tile the
plane.

Theorem 1.7.19 There is a domino system D which can tile the plane, but
has no periodic tiling.

Proof. If this fails, then for every D which can tile the plane, there is a
periodic tiling. Then we can devise an algorithm for checking whether a given
D can tile the plane or not, which is a contradiction. First enumerate, in some
standard way, all pairs (n,m), (n ≥ 1,m ≥ 1) (e.g. as shown in the figure),
say (ni,mi), i = 1, 2, . . . Then generate all tilings of the (n1×m1)-rectangle,
the (n2 ×m2)-rectangle (if any), etc.

1 2 3 4 5
1

2

3

4

-IjI

I

For each fixed (ni,mi) this is a finite process. Stop the process when some
(ni,mi) is found for which either there is a periodic tiling of the (ni ×mi)-
rectangle, or else there is no tiling of the (ni×mi)-rectangle. In the first case,
D can tile the plane and in the second it cannot. The only thing left to prove

1.7. KÖNIG’S LEMMA AND APPLICATIONS 49

is that this process terminates, i.e. for some i this must happen. But this is
the case, since either D can tile the plane and so by our assumption there is a
periodic tiling (of some (ni×mi)-rectangle)) or else D cannot tile the plane,
so, by the proof of Theorem 1.6.2, D cannot tile the (ni ×mi)-rectangle for
some ni = mi. a

1.7.D Compactness of [0, 1]

As another application, we will use König’s Lemma to prove that the unit
interval [0,1] is compact. This means the following: Let (ai, bi), i = 1, 2, . . .
be a sequence of open intervals such that

[0, 1] ⊆
⋃
i

(ai, bi).

Then there are i1, . . . , ik such that

[0, 1] ⊆ (ai1 , bi1) ∪ · · · ∪ (aik , bik).

To prove this, consider the so-called dyadic intervals which are obtained
by successively splitting [0,1] in half. They can be pictured as a binary tree.

We will prove that there is an n such that every one of the dyadic intervals
at the nth level of the tree (i.e., those with denominators 2−n) is contained
in some (ai, bi) (perhaps different (ai, bi) for different dyadic intervals). This
proves what we want.

The proof is by contradiction: If this fails, then for each n there is some
dyadic interval at the nth level which is not contained in any (ai, bi). Consider
then the subtree T of the tree of dyadic intervals, consisting of all vertices (i.e.,
dyadic intervals) I which are not contained in any (ai, bi). Then for each n,
there is an I = In at the n-th level belonging to T , and if I0 = [0, 1], I1, . . . , In
is the unique path from the root to In, it is clear that I0 ⊇ I1 ⊇ · · · ⊇ In,
so no one of I0, I1, . . . , In are contained in any (ai, bi), so the tree T has at
least n vertices for each n, thus it is infinite. It is clearly finite splitting. So
by König’s Lemma, it has an infinite branch I0, I1, I2, . . . Then I0 ⊇ I1 ⊇
I2 ⊇ . . . are closed intervals and the length of In is 2−n, so there is a unique
point x ∈

⋂
n In. Since [0, 1] ⊆

⋃
i(ai, bi), for some i we have x ∈ (ai, bi), and

if n is large enough so that min{x − ai, bi − x} > 2−n, then In ⊆ (ai, bi), a
contradiction.

50 CHAPTER 1. PROPOSITIONAL LOGIC

1.8 The Compactness Theorem

We now return to propositional logic. In this section we will prove a basic
result known as the Compactness Theorem and some applications of it.

1.8.A The Compactness Theorem

The compactness theorem has two equivalent versions.

Theorem 1.8.1 (Compactness Theorem I) Let S be any set of formulas
in propositional logic. If every finite subset S0 ⊆ S is satisfiable, then S is
satisfiable.

Theorem 1.8.2 (Compactness Theorem II) Let S be any set of formu-
las in propositional logic, and A any formula. Then if S |= A, there is a
finite subset S0 ⊆ S such that S0 |= A.

First we show that these two forms are equivalent.

I implies II. Assume I holds for any S. Fix then S and A with S |= A.
Then S ′ = S ∪ {¬A} is not satisfiable, so, by applying I to S ′, we have a
finite S ′0 ⊆ S ′ = S ∪ {A}, so that S ′0 is not satisfiable. Say S ′0 ⊆ S0 ∪ {¬A},
with S0 ⊆ S finite. Then S0 ∪ {¬A} is not satisfiable, so S0 |= A.

II implies I. Say S is not satisfiable. Then S |=⊥, where ⊥= p ∧ ¬p. So
by II S0 |=⊥ for some finite S0 ⊆ S. Then S0 is unsatisfiable.

We will now prove form I of the Compactness Theorem.

Proof of ??. We assume that every finite subset S0 ⊆ S is satisfiable. We
will then build a finite splitting tree which is infinite and thus, by König’s
Lemma, has an infinite branch. This infinite branch will give a truth assign-
ment satisfying S.

First let us notice that we can enumerate in a sequence A1, A2, A3, . . . ,
An, . . . all wff. So we can enumerate in a sequence

S = {B1, B2, B3, . . . , Bn, . . . }

all wff in S. Next k1 < k2 < k3 < · · · < kn < . . . are chosen so that

Bn = Bn(p1, . . . , pkn)

i.e, all the propositional variables of Bn are among p1, . . . , pkn .

1.8. THE COMPACTNESS THEOREM 51

We will now build a tree as follows: Let v0 be the root. The children
of v0 are all valuations v1 = (ε1, . . . , εk1) ∈ {0, 1}k1 which satisfy B1. Fix
any such v1, say v1 = (ε1, . . . , εk1). Its children are all valuations v2 =
(ε1, . . . , εk1 , εk1+1, . . . , εk2) ∈ {0, 1}k2 , which agree with v1 in their first k1

values and also satisfy both B1 and B2, etc.
First we argue that this tree is infinite: Fix any n ≥ 1. By assumption

there is a valuation vn = {ε1, . . . , εkn} ∈ {0, 1}kn which satisfies {B1, . . . , Bn}.
Let for 1 ≤ m ≤ n, vm = {ε1, . . . , εkm}, i.e., the restriction of vn to the first
km variables. Then clearly vm satisfies {B1, . . . , Bm}, so it is a vertex of our
tree, and vm+1 is a child of vm. So T has at least n vertices for each n, i.e.,
it is infinite. Clearly T is finite splitting. So, by König’s Lemma, it has an
infinite branch v0, v1, v2, . . . , vn, . . . Then

v1 = {ε1, . . . , εk1}
v2 = {ε1, . . . , εk1 , εk1+1, . . . , εk2}

...

vn = {ε1, . . . , εk1 , εk1+1, . . . , εk2 , εk2+1, . . . , εkn}
...

So if ν = {ε1, ε2, . . . }, ν is a valuation which satisfies all the Bn, i.e., it
satisfies S, and so S is satisfiable. a

1.8.B A Proof of König’s Lemma

We have proved the Compactness Theorem by using König’s Lemma. On
the other hand, we can also prove König’s Lemma by using the Compactness
Theorem as follows:

Consider a tree T with root v0 which is infinite, but has finite splitting.
Notice then that the set V of the vertices of T can be enumerated in a
sequence. Introduce now a propositional variable pv for each vertex v of T .
(Our preceding remark implies that we can enumerate these variables in a
sequence p1, p2, . . . , but there is no point in doing that explicitly.) Consider
now the following set S of wff, which we can view as “axioms”, where the
intuitive meaning of the variable pv is that “pv is true” iff “v is in the infinite
branch we try to find”.

(i) pv0

52 CHAPTER 1. PROPOSITIONAL LOGIC

(ii) pv ⇒ ¬pu, if v 6= u are at the same level or for some n, v is at level n,
u is at level n+ 1 and u is not a child of v.

(iii) If for each n, u1, . . . , ukn are all the vertices at level n, then we introduce
the wff pu1 ∨ pu2 ∨ · · · ∨ pukn

(n = 1, 2, . . .). (Here u is at level n if the
path from v0 to v has length n.)

Assume that this set S of wff is satisfiable, say by the valuation ν. Then
consider the following set of vertices

v ∈ P iff ν(pv) = 1.

We claim that P is an infinite branch, i.e., P contains v0 and exactly one
vertex at level n = 1, 2, . . . , say vn, so that vn+1 is a child of vn. First by
(i), v0 ∈ P . By (iii), for each n ≥ 1, there is at least one vertex v at level n
with v ∈ P and by (ii) there is exactly one, say vn. It only remains to prove
that vn+1 is a child of vn. Otherwise, by (ii), ν(pvn ⇒ ¬pvn+1) = 1, but also
ν(pvn) = ν(pvn+1) = 1, a contradiction.

By the Compactness Theorem, it only remains to show that every finite
subset S0 of S is satisfiable. Fix such an S0. Then for some large enough N0,
all the “axioms” (i), (ii), (iii) occurring in S0 contain variables pv with v at a
level n ≤ N0. Since T is infinite, every level is nonempty, so fix a node vN0 at
level N0 and look at the path v0, v1, . . . , vN0−1, vN0 from v0 to vN0 . Consider
then the valuation to all the variables pv with v at a level n ≤ N0 defined as
follows:

ν(Pv) = 1 iff v is one of v0, v1, . . . , vN0 .

Then all the “axioms” (i)-(iii) belonging to S0 are satisfied, i.e., S0 is satisfi-
able, and the proof is complete. a

1.8.C Partial Orders

We will give another application of the Compactness Theorem involving par-
tial orders.

Definition 1.8.3 A partial order on a set X is a relation x < y between
members of X such that it satisfies the following properties:

(i) If x < y, then y 6< x (in particular x 6< x),

1.8. THE COMPACTNESS THEOREM 53

(ii) x < y and y < z imply x < z.

Definition 1.8.4 A partial order is called a linear order (or total order) if
it also satisfies:

(iii) x < y or y < x or x = y.

Examples 1.8.5
(i) Let X = P (A) = set of all subsets of A, and

x < y iff x ⊆ y and x 6= y.

This is a partial order but is not linear, if A has more than one element.

(ii) Let X = N and < be the usual order of the integers. Then < is a linear
order.

Definition 1.8.6 We say that a linear order < on a set X extends a partial
order <′ on X if x <′ y implies x < y.

Example 1.8.7 On N+ = {1, 2, 3, . . . } consider the following two partial
orders:

(i) < is the usual order (so it is linear).

(ii) x <′ y iff x 6= y and x divides y (this is not linear).

Then < extends <′. If on the other hand we consider

(iii) x <′ y iff (x is even and y is odd) or (x, y are even and x < y),

then < does not extend <′.

Theorem 1.8.8 Let X = {x1, x2, . . . } be a countable set and <′ a partial
order on X. Then <′ can be extended to a linear order <.

Proof. First we note the following finite version of this theorem.

Lemma 1.8.9 Let X = {x1, . . . , xn} be a finite set. Then every partial order
on X can be extended to a linear order.

54 CHAPTER 1. PROPOSITIONAL LOGIC

This can be proved by induction, and we will give the proof at the end.
Consider now the infinite case, where X = {x1, x2, . . . }, xi 6= xj, if i 6= j.

Introduce for each pair (i, j), i = 1, 2, . . . , j = 1, 2, . . . , a propositional
variable pi,j. The intuitive meaning is that “pi,j is true” if “xi < xj in the
linear order < we try to find”. Let S consist of the following “axioms”:

(i) pi,j ⇒ ¬pj,i for all i, j;

(ii) pi,j ∧ pj,k ⇒ pi,k, for all i, j, k;

(iii) pi,j ∨ pj,i, for all i 6= j;

(iv) pi,j, whenever xi <
′ xj.

Suppose S is satisfiable by some valuation ν. Then define the following
relation on X:

xi < xj iff ν(pi,j) = 1.

By (i)-(iii), < is a linear order and by (iv) it extends <′. To show that S is
satisfiable, it is enough, by the Compactness Theorem, to show that every
finite subset S0 ⊆ S is satisfiable. Fix such an S0. Then for some large enough
N0, S0 contains only variables pi,j with i, j ≤ N0. Let X0 = {x1, . . . , xN0}
and restrict the partial order <′ to X0. Call it <′X0

. By the lemma, there
is a linear order <X0 on X0 extending <′X0

. Use this to define the following
valuation to the variables pi,j for i, j ≤ N0:

ν(pi,j) = 1 iff xi <X0 xj.

Then all the axioms (i)-(iv) in S0 are satisfied, i.e., S0 is satisfiable.
It remains to give the proof of the lemma: Let n be the cardinality of

X. We prove this by induction on n. If n = 1 it is obvious, as the only
partial order on a set of cardinality 1 is linear. So assume X has cardinality
n+ 1. Consider a partial order <′ on X. Since X is finite, it has a minimal
element, say x0 (x is minimal if there is no y <′ x). Let x1, . . . , xn be the rest
of the elements of X. Restrict <′ to {x1, . . . , xn} and by induction hypothesis
extend this to a linear order ≺ on {x1, . . . , xn}. Then define a linear order
< on {x0, x1, . . . , xn} by letting

xi < xj iff xi ≺ xj, for 1 ≤ i, j ≤ n

1.9. RAMSEY THEORY 55

and
x0 < xi, for 1 ≤ i ≤ n

(i.e., the order < agrees with ≺ on {x1, . . . , xn} and x0 is < than any element
of {x1, . . . xn}.) a

1.9 Ramsey Theory

Let N denote the set of natural numbers, N = {0, 1, 2, . . . }. For 0 <
m, l, k, n ∈ N, set m = {1, 2, . . . ,m}, l = {1, 2, . . . , l} and let m → (n)kl
be the following assertion.

Whenever f : [m]k → l, there is H ∈ [m]n homogeneous for f .

Similarly, let N→ (N)kl mean that for every f : [N]k → l there is H ⊆ N
infinite and homogeneous for f . Here,

• [X]k is the collection of k-sized subsets of X.

• Given f : [X]k → l, H ⊆ X is homogeneous for f iff whenever s, t ∈
[H]k, then f(s) = f(t).

The classic Ramsey Theorem was proved in 1928. Frank Plumpton Ram-
sey was born in 1903 in Cambridge, and died in 1930 in London as a result of
an attack of jaundice. An enthusiastic logician, he considered mathematics
to be part of logic. His second paper, On a problem of formal logic was read
to the London Mathematical Society on 13 December 1928 and published
posthumously in the Proceedings of the London Mathematical Society in
1930. There he proves Ramsey Theorem and uses it to deduce a result on
propositional logic.

1.9.A Ramsey Theorem, infinite version

Theorem 1.9.1 For all 0 < k, l ∈ N, N → (N)kl . In English: Given any
f : [N]k → l there is an infinite subset of N homogeneous for f .

Proof. The proof is by induction on k. For k = 1 the result is obvious; it
simply says that if an infinite set is partitioned into finitely many pieces, one
of the pieces is itself infinite, here we are identifying a number n with the
singleton {n}.

56 CHAPTER 1. PROPOSITIONAL LOGIC

Assume we know the result for k and we are given a function f : [N]k+1 →
l. Clearly, if X is infinite and h : [X]k → l, then there is an infinite Y ⊆ X
homogeneous for h. This simple observation (that we can replace N with any
infinite set) is key to the argument.

We start by defining a decreasing sequence of infinite subsets of N, A1 ⊃
A2 ⊃ A3 ⊃ · · · with the property that if an = minAn then a1 < a2 < · · · .

Let A1 = N (so a1 = 1). In general, given An, define fn : [An \ {an}]k → l
by setting fn(s) = f({an} ∪ s) and use the inductive hypothesis to find
An+1 ⊆ An \ {an} infinite and homogeneous for fn.

Now consider the set A = {a1, a2, . . . }. Notice that, by construction, if
s, t ∈ [A]k+1 and an = min(s) = min(t) then s \ {an}, t \ {an} ∈ [An+1]k, so
fn(s \ {an}) = fn(t \ {an}) (since An+1 is homogeneous for fn), i.e., f(s) =
f(t). This means that f(s) only depends on min(s) for any s ∈ [A]k+1

(usually one says that A is min-homogeneous for f).
Consider now the function g : A → l given by g(a) = f(s) where s is

any element of [A]k+1 with min(s) = a. By the case k = 1, there is an
infinite B ⊂ A homogeneous for g. But then it is easy to see that B is also
homogeneous for f . a

Remark. Another proof of Ramsey theorem can be obtained from König’s
lemma. Instead, we use König’s lemma to deduce a finite version of Ramsey’s
result.

1.9.B Ramsey Theorem, finite version

Theorem 1.9.2 For all n, k, l ∈ N there is m such that m → (n)kl . In
English: Given any n, k, l there is m sufficiently large that whenever f :
[m]k → l, there is H ⊂m, |H| = n that is homogeneous for f .

Proof. We provide a proof using König’s lemma and the infinite version
of Ramsey theorem. Suppose towards a contradiction that for some fixed
values of n, k, l there is no m as required. This means that for every m there
is a function f : [m]k → l without homogeneous sets of size n. Clearly, if
m1 < m2 and f : [m2]k → l has no such homogeneous sets, then f extends a
function g with domain [m1]k with the same property, and any such function
f is an extension of some such function g. So we can define a rooted tree
T as follows: Any node of the tree at level m is a function f : [m]k → l
without homogeneous sets of size n. The children of f are all the functions

1.9. RAMSEY THEORY 57

h : [{1, . . . ,m + 1}]k → l extending f and with the same property. Clearly,
T is finite splitting and our assumption implies that it is infinite. By König’s
lemma it has an infinite branch, which consists of functions with longer and
longer domains that cohere. We can thus take their union and obtain a
function F : [N]k → l. It is easy to see that F admits no homogeneous sets
of size n. But this is impossible, by the infinite version of Ramsey Theorem.
Contradiction. a

Remark. This kind of argument is very powerful, but it has an important
drawback. Namely, it is nonconstructive. There is no known method that
allows us to extract from this proof for given n, k, l a bound on how large
m must be. Different, more finitistic, proofs can be given that provide ex-
plicit bounds. The computation of actual values of m, the so-called Ramsey
numbers (as opposed to mere upper or lower bounds) is very much an open
problem.

For the application to logic that the theorem was originally conceived for,
and many other applications of this method to combinatorics, we suggest to
look at R. Graham, B. Rothschild, J. Spencer, Ramsey Theory, 2nd ed.,
Wiley, New-York, 1990.

In general one refers to this use of König’s lemma that serves as a bridge
between infinite and finite statements as a compactness argument.

1.9.C A few other applications of compactness

Say that a function f : [m]k → {1, . . . ,m− k} is regressive iff f(s) < min(s)
for all s ∈ [m]k. Similarly we can talk of a function f : [N]k → N being
regressive. Say that H is min-homogeneous for f iff f(s) = f(t) whenever
s, t ∈ [H]k and min(s) = min(t).

If f : [N]k → N is regressive, it does not need to admit infinite ho-
mogeneous sets. For example, let f(s) = min(s). However, it does admit
min-homogeneous sets.

Theorem 1.9.3 If X ⊆ N is infinite and f : [X]k → N is regressive, there
is an infinite subset of X min-homogeneous for f .

The proof is an easy modification of the proof of the infinite version of
Ramsey Theorem given above, and it is a useful exercise to work out its
details.

58 CHAPTER 1. PROPOSITIONAL LOGIC

Using König’s lemma very much as in the proof of the finite version of
Ramsey Theorem, one obtains:

Corollary 1.9.4 For all k and n there is m such that if

f : [m]k → {1, . . . ,m− k}

is regressive, then it admits a min-homogeneous set of size n.

This was proven by Kanamori and McAloon in the late 80s. However,
unlike the finite version of Ramsey Theorem, there is no purely finitistic
proof of this result. This was also proven by Kanamori and McAloon, using
methods of mathematical logic. See On Gödel incompleteness and finite
combinatorics, Annals of Pure and Applied Logic 33 (1) (1987), 23–41.

Suppose now that X ⊂ N and that f : [X]k → l. Let H be a finite subset
of X homogeneous for f . Say that H is large-homogeneous iff min(H) ≤ |H|.

Theorem 1.9.5 For all k, l, n there is m sufficiently large that any f :
[m]k → l admits a large-homogeneous set of size n.

The proof of this result can be obtained by a König’s lemma argument
from an appropriate infinite version, whose proof is again an easy modifica-
tion of the argument we gave for the infinite version of Ramsey Theorem.
Again, it is not possible to prove this result by purely finitistic methods.
This was shown by Harrington and Paris in A mathematical incompleteness
in Peano Arithmetic, in Handbook of Mathematical Logic, Jon Barwise
ed., North-Holland, 1977.

1.10 The Resolution Method

We would like to have a mechanical procedure (algorithm) for checking
whether a given set of formulas logically implies another, that is, given
A1, . . . , An, A, whether

A1, . . . , An |= A.

We know that this happens if and only if

|= (A1 ∧ · · · ∧ An)⇒ A

1.10. THE RESOLUTION METHOD 59

which happens iff

A1 ∧ · · · ∧ An ∧ ¬A is unsatisfiable.

So it suffices to have an algorithm to check the (un)satisfiability of a single
wff. The method of truth tables gives one such algorithm. We will now
develop another method which is often (with various improvements) more
efficient in practice.

It will be also an example of a formal calculus. By that we mean a set
of rules for generating a sequence of strings in a language. Formal calculi
usually start with a certain string or strings as given, and then allow the
application of one or more “rules of production” to generate other strings.

We have already encountered some formal calculi in the form of recursive
definitions. Definition ?? (Well-Formed Formulas) gives a formal calculus
consisting of certain given wffs (propositional variables) and certain rules for
producing new wffs (negation and adding binary connectives). We will see
yet another example of a formal calculus in section ??.

Suppose A is a wff which we want to test for satisfiability. First we note
that although there is no known efficient algorithm for finding a wff A′ in cnf
(conjunctive normal form) equivalent to A, it is not hard to show that there
is an efficient algorithm for finding a wff A∗ in cnf such that:

A is satisfiable iff A∗ is satisfiable.

This will be discussed in Assignment #4, Problem 1.
So from now on we will only consider wff in cnf, and the Resolution

Method applies to such formulas only. Say

A = (`1,1 ∨ · · · ∨ `1,n1) ∧ · · · ∧ (`k,1 ∨ · · · ∨ `k,nk
)

with `i,j literals. Since order and repetition in each conjunct

`i,1 ∨ · · · ∨ `i,ni
(∗)

are irrelevant (for semantic purposes), we can replace (??) by the set of
literals

ci = {`i,1, `i,2, . . . , `i,ni
}.

Such a set of literals is called a clause. It corresponds to the formula (??).
So the wff A above can be simply written as a set of clauses (again since the

60 CHAPTER 1. PROPOSITIONAL LOGIC

order of the conjunctions is irrelevant)

C = {c1, . . . , ck}
= {{`i,1, . . . `i,n1}, . . . , {`k,1, . . . , `k,nk

}}

Satisfiability of A means then simultaneous satisfiability of all of its clauses
c1, . . . , ck, i.e., finding a valuation ν which makes ci true for each i, i.e., which
for each i makes some `i,j true.

Example 1.10.1

A = (p1 ∨ ¬p2) ∧ (p3 ∨ p3)

c1 = {p1,¬p2}
c2 = {p3}
C = {{p1,¬p2}, {p3}}.

From now on we will deal only with a set of clauses C = {c1, c2, . . . },
which we would even allow to be infinite. Satisfying C means (again) that
there is a valuation which satisfies all c1, c2, . . . , i.e. if ci = `i,1 ∨ · · · ∨ `i,ni

,
then for all i there is j so that it makes `i,j true. (Of course in the case C
comes from some wff A, C is a finite set of clauses.)

Notice that if the set of clauses CA is associated as above to A (in cnf)
and CB to B, then

A ∧B is satisfiable iff CA ∪ CB is satisfiable.

By convention we also have the empty clause 2, which contains no literals.
The empty clause is (by definition) unsatisfiable, since for a clause to be
satisfied by a valuation, there has to be some literal in the clause which it
makes true, but this is impossible for the empty clause, which has no literals.

For a literal u, let ū denote its “conjugate”, i.e.

ū = ¬p, if u = p,

ū = p if u = ¬p.

Definition 1.10.2 Suppose now c1, c2, c are three clauses. We say that c is
a resolvent of c1, c2 if there is a u such that u ∈ c1, ū ∈ c2 and

c = (c1 \ {u}) ∪ (c2 \ {ū}).

1.10. THE RESOLUTION METHOD 61

We denote this by the diagram

c1 c2

c

We allow here the case c = 2, i.e. c1 = {u}, c2 = {ū}.

Examples 1.10.3
(i)

{p,¬q, r} {q, r}

{p, r}

(ii)

{p,¬q} {¬p, q}

{q,¬q}

{p,¬q} {¬p, q}

{p,¬p}

(iii)

{p} {¬p}

2

Proposition 1.10.4 If c is a resolvent of c1, c2, then {c1, c2} |= c. (We view
here c1, c2, c as formulas.)

Proof. Suppose a valuation ν satisfies both c1, c2 and let u be the literal
used in the resolution. If ν(u) = 1, then since ν(c2) = 1 we clearly have
ν(c2 \ {ū}) = 1 and so ν(c) = 1. If ν(u) = 0, then ν(c1 \ {u}) = 1, so
ν(c) = 1. a

Definition 1.10.5 Let now C be a set of clauses (finite or infinite). A proof
by resolution from C is a sequence c1, c2, . . . , cn of clauses such that each ci is
either in C or else it is a resolvent of some cj, ck with j, k < i. We call cn the
goal or conclusion of the proof. If cn = 2, we call this a proof by resolution
of a contradiction from C or simply a refutation of C.

62 CHAPTER 1. PROPOSITIONAL LOGIC

Example 1.10.6 Let C = {{p, q,¬r}, {¬p}, {p, q, r}, {p,¬q}}. Then the
following is a refutation of C:

c1 = {p, q,¬r} (in C)
c2 = {p, q, r} (in C)
c3 = {p, q} (resolvent of c1, c2 (by r))
c4 = {p,¬q} (in C)
c5 = {p} (resolvent of c3, c4 (by q))
c6 = {¬p} (in C)
c7 = 2 (resolvent of c5, c6 (by p)).

We can also represent this by a tree:

{p, q, r} {p, q,¬r}

{p, q} {p,¬q}

{p} {¬p}

2

Terminal nodes correspond to clauses in C and each branching ∧ corre-
sponds to creating a resolvent. We call such a tree a resolution tree.

Example 1.10.7 Let C = {{¬p, s}, {p,¬q, s}, {p, q,¬r}, {p, r, s}, {¬s}}.

{¬p, s}

{p,¬q, s}

{p, q,¬r} {p, r, s}

{p, q, s}

{p, s}

{s} {¬s}

2

1.10. THE RESOLUTION METHOD 63

This can be also written as a proof as follows:

c1 = {p, q,¬r}
c2 = {p, r, s}
c3 = {p, q, s}
c4 = {p,¬q, s}
c5 = {p, s}
c6 = {¬p, s}
c7 = {s}
c8 = {¬s}
c9 = 2

(This proof is not unique. For example, we could move c8 before c3 and
get another proof corresponding to the same resolution tree. The relationship
between proofs by resolution and their corresponding trees is similar to that
between parsing sequences and parse trees.)

The goal of proofs by resolution is to prove unsatisfiability of a set of
clauses. The following theorem tells us that they achieve their goal.

Theorem 1.10.8 Let C = {c1, c2, . . . } be a set of clauses. Then C is un-
satisfiable iff there is a refutation of C.

Proof.

⇐: Soundness of the proof system.
Let d1, . . . , dn be a proof of resolution from C. Then by Proposition 1.8.1,

we can easily prove, by induction on 1 ≤ i ≤ n, that

C |= di.

So if dn = 2, then C |= 2, i.e., C is unsatisfiable.

⇒: Completeness of the proof system.
First we can assume that C has no clause ci which contains, for some

literal u, both u and ū (since such a clause can be dropped from C without
affecting its satisfiability).

Notation. If u is a literal, let C(u) be the set of clauses resulting from C
by canceling every occurrence of u within a clause of C and eliminating all
clauses of C containing ū (this effectively amounts to setting u = 0).

64 CHAPTER 1. PROPOSITIONAL LOGIC

Example. Let C = {{p, q,¬r}, {p,¬q}, {p, q, r}, {q, r}}. Then

C(r) = {{p,¬q}, {p, q}, {q}}
C(r̄) = {{p, q}, {p,¬q}}

Note that u, ū do not occur in C(u), C(ū). Note also that if C is unsat-
isfiable, so are C(u), C(ū). Because if ν is a valuation satisfying C(u), then,
since C(u) does not contain u, ū, we can assume that ν does not assign a
value to u. Then the valuation ν ′ which agrees on all other variables with ν
and gives ν(u) = 0 satisfies C. Similarly for C(ū).

So assume C is unsatisfiable, in order to construct a refutation of C. By
the Compactness Theorem there is a finite subset C0 ⊆ C which is unsatisfi-
able, so we may as well assume from the beginning that C is finite. Say that
all the propositional variables occurring in clauses in C are among p1, . . . , pn.
We prove then the result by induction on n. In other words, we show that
for each n, if C is a finite set of clauses containing variables among p1, . . . , pn
and C is unsatisfiable, there is a refutation of C.

n = 1. In this case, we must have C = {{p1}, {¬p1}}, and hence we have
the refutation {p1}, {¬p1}, 2.

n → n + 1. Assume this has been proved for sets of clauses with variables
among {p1, . . . , pn} and consider a set of clauses C with variables among
{p1, . . . , pn, pn+1}. Let u = pn+1.

Then C(u), C(ū) are also unsatisfiable and do not contain pn+1, so by
induction hypothesis there is a refutation d1, . . . dm, dm+1 = 2 for C(u) and
a refutation e1, . . . , ek, ek+1 = 2 for C(ū).

Consider first d1, . . . , dm+1. Each clause di is in C(u) or comes as a
resolvent of two previous clauses. Define then recursively d′1, . . . , d

′
m, d

′
m+1,

so that either d′i = di or d′i = di ∪ {u}.
If di ∈ C(u), then it is either in C and then we put d′i = di or else is

obtained from some d∗i ∈ C by dropping u, i.e., di = d∗i \ {u}. Then put
d′i = d∗i .

The other case is where for some j, k < i, we have that di is a resolvent of
dj, dk, and thus by induction d′j, d

′
k are already defined. The variable used in

this resolution is in {p1, . . . , pn}, so we can use this variable to resolve from
d′j, d

′
k to get d′i.

Thus d′m+1 = 2 or d′m+1 = {pn+1}, and d′1, . . . d
′
m, d

′
m+1 is a proof by

resolution from C. If d′m+1 = 2 we are done, so we can assume that d′m+1 =

1.10. THE RESOLUTION METHOD 65

{pn+1}, i.e., d′1, . . . , d
′
m, {pn+1} is a proof by resolution from C. Similarly,

working with ū, we can define e′1, . . . e
′
k, e
′
k+1, a proof by resolution from C

with e′k+1 = 2 or e′k+1 = {¬pn+1}. If e′k+1 = 2 we are done, otherwise
e′1, . . . , e

′
k, {¬pn+1} is a proof by resolution from C. Then

d′1, . . . , d
′
m, {pn+1}, e′1, . . . , e′k, {¬pn+1},2

is a refutation from C. a

Example 1.10.9

C = {{p, q,¬r}, {¬p}, {p, q, r}, {p,¬q}} (u = r)

C(r) = {{¬p}, {p, q}, {p,¬q}}
C(¬r) = {{p, q}, {¬p}, {p,¬q}}

Refutation
from C(r)

Proof by
resolution from C

Refutation
from C(¬r)

Proof by
resolution from C

{p, q} → {p, q, r} {p, q} → {p, q,¬r}
{p,¬q} → {p,¬q} {p,¬q} → {p,¬q}
{p} → {p, r} {p} → {p,¬r}
{¬p} → {¬p} {¬p} → {¬p}

2→ {r} 2→ {¬r}
2

Remark. Notice that going from n to n+ 1 variables “doubles” the length
of the proof, so this gives an exponential bound for the refutation.

Remark. The method of refutation by resolution is non-deterministic–
there is no unique way to arrive at it. Various strategies have been devised
for implementing it.

One is by following the recursive procedure used in the proof of theo-
rem ??. Another is by brute force. Start with a finite set of clauses C. Let
C0 = C. Let C1 = C together with all clauses obtained by resolving all
possible pairs in C0, C2 = C1 together with all clauses obtained by resolving
all possible pairs from C1, etc. Since any set of clauses whose variables are
among p1, . . . , pn cannot have more than 22n elements, this will stop in at
most 22n many steps. Put C22n = C∗. If 2 ∈ C∗ then we can produce a

66 CHAPTER 1. PROPOSITIONAL LOGIC

refutation proof of about that size (i.e., 22n). Otherwise, 2 6∈ C∗ and C is
satisfiable.

Other strategies are more efficient in special cases, e.g., for Horn formulas
(see Assignment #4, for the definition of a Horn formula.)

1.11 A Hilbert-Type Proof System

We will now describe a different formal calculus of proofs, which corresponds
more directly to our intuitive concept of a “proof.” That is, it will start
with axioms and use rules of inference to deduce consequences, rather than
dealing with abstract clause sets.

This style of arguing in formal logic, using axioms and rules, was intro-
duced by David Hilbert and his school. Hilbert was born in Königsberg,
Prussia, in 1862, and died in Göttingen, Germany, in 1943. He is one of the
most important mathematicians of the late 19-th and early 20-th century.
A strong advocate of nonconstructive methods, this probably started with
his work on “invariant theory,” where he proved a Basis Theorem without
exhibiting an explicit basis. The paper appeared in Mathematische Annalen
in 1888. The result states that in any number of variables there is a finite set
of generators for the invariants of quantics. A quantic is a symmetric tensor
of a given degree constructed from tensor powers of a (finite dimensional)
vector space. Invariance is measured under invertible operators of the space
in itself.

Gordon, the world expert in invariant theory, strongly opposed in vain to
the publication of Hilbert’s result, due to its nonconstructive nature. On the
other hand, Klein said of this result that “I do not doubt this is the most
important work on general algebra that the Annalen has ever published.”

Hilbert’s work in number theory led to his book on the theory of algebraic
number fields, recently translated into English. He started his work on logic
with the publication in 1899 of the Grundlagen der Geometrie, where he
advocates the axiomatic approach to mathematics.

In 1900 he delivered the invited address “Mathematical problems” to the
Second International Congress of Mathematicians in Paris, where he listed 23
problems that in his opinion were essential for the progress of mathematics.
From here comes his dictum “Here is the problem, seek the solution”. The
inscription on his tombstone, “We must know, we will know” comes from a
speech in Königsberg in 1938. His address can be found in the Bulletin of

1.11. A HILBERT-TYPE PROOF SYSTEM 67

the AMS, vol 37, number 4 (2000).
His work on integral equations and calculus of variations led to functional

analysis and the concept of Hilbert space. He also solved Waring’s problem,
a well-known problem in number theory. His work in logic resulted in the
development of proof systems and lead to the incompleteness theorems of K.
Gödel.

1.11.A Formal Proofs

It will be convenient here to consider as the basic symbols in the language of
propositional logic the following:

¬,⇒,), (, p1, p2, p3, . . .

and view (A ∧B), (A ∨B), (A⇔ B) as abbreviations:

(A ∧B) : ¬(A⇒ ¬B)

(A ∨B) : (¬A⇒ B)

(A⇔ B) : ¬((A⇒ B)⇒ ¬(B ⇒ A)).

A (logical) axiom is any formula of one of the following forms:

(i) A⇒ (B ⇒ A)

(ii) (A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))

(iii) ((¬B ⇒ ¬A)⇒ ((¬B ⇒ A)⇒ B))

(for arbitrary A,B,C). Notice that each one of these is a tautology.
We also have a rule of inference called modus ponens or MP: “From A

and A⇒ B, derive B.” In formal calculi, a rule such as this for deriving one
formula from others given, is sometimes written as follows:

A, A⇒ B
B

.

Modus ponens is short for latin “modus ponendo ponens” which means
“proposing method”. We can also draw this rule as a proof tree:

A A⇒ B

B

Notice that A,A⇒ B logically imply B.

68 CHAPTER 1. PROPOSITIONAL LOGIC

Definition 1.11.1 Let S be any set (finite or infinite) of formulas. A formal
proof from S is a finite sequence A1, A2, . . . , An of formulas such that each
Ai is either a logical axiom, belongs to S or comes by applying modus ponens
to some Aj, Ak with j, k < i (i.e., Ak is the formula Aj ⇒ An). We call this
sequence a formal proof of An from S.

Definition 1.11.2 If there is a formal proof of a formula A from S we say
that A is a formal theorem of S and write

S ` A.

If S = ∅, we just write
` A

and call A a formal theorem.

Notice that S ` A and S ⊆ S ′ imply that S ′ ` A. Also notice that if
S ′ ` A and S ` B for all B ∈ S ′, then S ` A, since the formal proofs can
simply be concatenated. Finally, S ` A implies that there is finite S0 ⊆ S
with S0 ` A, since a formal proof can only be finitely long and hence can
only use finitely many formulas of S.

Example 1.11.3 S = {(A ⇒ B), A ⇒ (B ⇒ C), A}. Here is a formal
proof of C from S:

1. A⇒ (B ⇒ C) (in S)
2. ((A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))) (axiom (ii))
3. (A⇒ B)⇒ (A⇒ C) (MP from 1, 2)
4. A⇒ B (in S)
5. A⇒ C (MP from 3, 4)
6. A (in S)
7. C (MP from 5, 6)

We can also write this as a proof tree:

1.11. A HILBERT-TYPE PROOF SYSTEM 69

A

A⇒ B

A⇒ (B ⇒ C) (A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))

(A⇒ B)⇒ (A⇒ C)

A⇒ C

C

Example 1.11.4 The following formal proof shows that ` A⇒ A:

1. (A⇒ ((A⇒ A)︸ ︷︷ ︸
B

⇒ A︸︷︷︸
C

))⇒ ((A⇒ (A⇒ A)︸ ︷︷ ︸
B

)⇒ (A⇒ A︸︷︷︸
C

))

(Ax. (ii))
2. A⇒ ((A⇒ A)︸ ︷︷ ︸

B

⇒ A) (Ax. (i))

3. ((A⇒ (A⇒ A))⇒ (A⇒ A)) (MP 1, 2)
4. A⇒ (A⇒ A) (Ax. (i))
5. A⇒ A (MP 3, 4).

The main result about this formal proof system is the following:

Theorem 1.11.5 For any set of formulas S, and any formula A:

S |= A iff S ` A.

One direction of this theorem, i.e. the soundedness of the proof system
(S ` A implies that S |= A) is easy, and we prove it first.

1.11.B Soundness

Given a property P (A) of formulas, suppose we want to prove that P (A)
holds for all formal theorems of S, i.e., we want to show that if S ` A, then
P (A) holds. We can do this by the following form of induction:

Basis.

(i) Show that P (A) holds, when A is a logical axiom;

(ii) Show that P (A) holds when A is in S.

70 CHAPTER 1. PROPOSITIONAL LOGIC

Induction Step. Assuming that P (A), P (A ⇒ B) hold, and show that
P (B) holds.

We call this induction on proofs of A from S.

In our case P (A) is the property

“S |= A”.

The basis of the induction is clear: S |= A is certainly correct if A is in S or
else A is a logical axiom (since it is then a tautology). The induction step is
equally simple: If S |= A and S |= A⇒ B, clearly S |= B.

1.11.C Completeness

To prove the hard direction of the theorem, i.e. the completeness of the
proof system, it will be convenient to develop first some basic properties
of this system. These are useful independently of this and can help, for
example, in constructing formal proofs. They are indeed formal analogs of
some commonly used proof techniques. They are theorems about formal
proofs and theorems, and so often called metatheorems.

Proposition 1.11.6 (The Deduction Theorem) If S ∪ {A} ` B, then
S ` A⇒ B.

Remark. It is easy to see that if S ` A⇒ B, then S ∪ {A} ` B.

Proof. We will show this by induction on proofs of B from S ∪ {A}.

Basis.

(i) B is a logical axiom. Then clearly S ` B. But B ⇒ (A ⇒ B)
is a logical axiom, thus S ` B ⇒ (A ⇒ B), so, by modus ponens,
S ` A⇒ B.

(ii) B is in S ∪ {A}. There are two subcases:

(a) B is in S. Then again S ` B and the proof is completed as in (i).

(b) B = A. Then ` A ⇒ A by example ??, so S ` A ⇒ A, which is
the same as S ` A⇒ B

1.11. A HILBERT-TYPE PROOF SYSTEM 71

Induction step. We assume that we have shown that S ` A ⇒ (B ⇒ C)
and S ` A ⇒ B, and want to show that S ` A ⇒ C. Now ((A ⇒ (B ⇒
C))⇒ ((A⇒ B)⇒ (A⇒ C)) is a logical axiom, so

S ` ((A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C)),

and then, by MP applied twice, we have

S ` A⇒ C.

a

Definition 1.11.7 We call a set of formulas S formally inconsistent if for
some formula A,

S ` A and S ` ¬A.

Otherwise, S is formally consistent.

Proposition 1.11.8 (Proof by Contradiction) If S∪{A} is formally in-
consistent, then S ` ¬A.

Proof. Left for Assignment #5. a

Proposition 1.11.9 (Proof by Contrapositive) If S ∪ {A} ` ¬B, then
S ∪ {B} ` ¬A.

Proof. Left for Assignment #5. a

We embark now on the proof of the Completeness of our proof system.
We claim that it is enough to show the following:

If a set of formulas S is formally consistent, then it is satisfiable. (∗)

To see this, assume (??) has been proved. If S |= A, then S∪{¬A} is unsat-
isfiable, so by (??), applied to S ∪ {¬A}, S ∪ {¬A} is formally inconsistent.
Thus, by proof by contradiction, S ` ¬¬A, so by Assignment #5, Problem
1, S ` A, which is what we wanted. So it remains to prove (??).

The idea of the proof is as follows: Let us call a set of formulas S̄ complete
if for any formula A,

A ∈ S̄ or ¬A ∈ S̄.

72 CHAPTER 1. PROPOSITIONAL LOGIC

We will first prove that if S is a given formally consistent set of formulas,
then we can find a formally consistent set of formulas S̄ ⊇ S which is also
complete. Then for any propositional variable pi we must have that exactly
one of the following holds

pi ∈ S̄ or ¬pi ∈ S̄.

Thus we can define a valuation ν by letting

ν(pi) =

{
1 if pi ∈ S̄
0 if ¬pi ∈ S̄

.

It will then turn out that ν is a valuation that satisfies S̄ and so S, i.e., S is
satisfiable. Let’s implement this plan.

Lemma 1.11.10 Let S be a formally consistent set of formulas. Then we
can find a formally consistent and complete set of formulas S̄ such that S ⊆
S̄.

Proof. First we can enumerate in a sequence A1, A2, . . . all formulas. Then
we can define recursively a sequence

S0 = S, S1, S2, . . .

of formulas such that
S0 ⊆ S1 ⊆ S2 ⊆ . . .

as follows:

S0 = S,

Sn+1 =

{
Sn ∪ {An+1} if S ∪ {An+1} is formally consistent

Sn ∪ {¬An+1} otherwise.

We claim then that each Sn is formally consistent. We do this easily by
induction using the following sublemma.

Sublemma 1.11.11 If T is a formally consistent set of formulas and A
is any formula, then at least one of T ∪ {A}, T ∪ {¬A} is still formally
consistent.

1.11. A HILBERT-TYPE PROOF SYSTEM 73

Proof. Otherwise both T ∪ {A}, T ∪ {¬A} are formally inconsistent. So
T ` A by proof of contradiction and Assignment #5, Problem 1, and since
clearly T ` B for any B ∈ T , it follows that T ` B for any B ∈ T∪{A}. Since
T ∪ {A} is formally inconsistent, this shows that T is formally inconsistent,
a contradiction. a

Now let S̄ =
⋃∞
n=1 Sn. We claim this works. First S̄ is complete, since

if A is any given formula, then A = An for some n and so by construction
either A ∈ Sn or ¬A ∈ Sn, i.e., A ∈ S̄ or ¬A ∈ S̄. Finally S̄ is still
formally consistent, since otherwise S̄ ` A, S̄ ` ¬A for some formula A.
Then by definition of a formal proof, there is a finite subset S∗ ⊆ S̄ such
that S∗ ` A, S∗ ` ¬A. But then for some large enough n we have S∗ ⊆ Sn,
so Sn ` A, Sn ` ¬A, and so Sn is formally inconsistent, a contradiction. a

Lemma 1.11.12 Let S̄ be formally consistent and complete. Define the val-
uation ν by ν(pi) = 1 if pi ∈ S̄, ν(pi) = 0 if ¬pi ∈ S̄. Then for any formula
A,

ν(A) = 1 iff A ∈ S̄.

Proof. Left for Assignment #5. a
The combination of the two preceding lemmas finishes the proof of the

completeness of the proof system. a
We have already noted that if S ` A then there is finite S0 ⊆ A with

S0 ` A. Therefore, as a corollary of the completeness of the proof system,
we obtain a new proof of the Compactness Theorem for propositional logic.

1.11.D General Completeness

The Completeness Theorem for propositional logic is proved above only for
formulas built using {⇒,¬}. However, the result is valid for general formulas,
provided a few logical axioms are added to the list. The proof given above
can be easily adapted, and it is a useful exercise to see what additional steps
are necessary. The axioms are designed to show that the formulas using the
additional connectives are equivalent to formulas using only {⇒,¬}. Here is
a possible list.

(i) (A⇒ (B ⇒ A))

(ii) ((A⇒ (B ⇒ C)) =⇒ ((A⇒ B)⇒ (A⇒ C)))

74 CHAPTER 1. PROPOSITIONAL LOGIC

(iii) ((¬A⇒ ¬B)⇒ (B ⇒ A))

(iv) ((A ∧B)⇒ A)

(v) ((A ∧B)⇒ B)

(vi) ((A⇒ B) =⇒ ((A⇒ C)⇒ (A⇒ (B ∧ C))))

(vii) (A⇒ (A ∨B))

(viii) (B ⇒ (A ∨B))

(ix) ((A⇒ C) =⇒ ((B ⇒ C)⇒ ((A ∨B)⇒ C)))

(x) ((A⇔ B)⇒ (A⇒ B))

(xi) ((A⇔ B)⇒ (B ⇒ A))

(xii) ((A⇒ (B ⇒ C)) =⇒ ((A⇒ (C ⇒ B))⇒ (A⇒ (B ⇔ C))))

Chapter 2

First-Order Logic

2.1 Structures

2.1.A Relations and Functions

Definition 2.1.1 Let A be a nonempty set and let n = 1, 2, An n-ary
relation or predicate on A is a subset R ⊆ An, where An = {(a1, . . . , an) :
a1, . . . , an ∈ A} is the set of ordered n-tuples of elements of A. We call n the
arity of R.

Examples 2.1.2
(i) A = N (= {0, 1, 2, . . . })

R = {n ∈ N : n is even} ⊆ N (unary (1-ary))

S = {(m,n) ∈ N2 : m < n} ⊆ N2 (binary (2-ary))

T = {(m,n, p) ∈ N3 : m ≡ n mod (p)} ⊆ N3 (ternary (3-ary))

(ii) A = R (= the set of reals)

Q = {x ∈ R : x is rational} ⊆ R (unary)

P = {(x, y) ∈ R2 : y = x2} ⊆ R2 (binary)

U =

(a1, . . . , an) ∈ Rn :
a1x

n−1 + a2x
n−2 + · · ·+ an−1x+ an

has n− 1 real solutions.

 (n-ary)

B = {(x, y, z) : y is between x and z} (ternary)

75

76 CHAPTER 2. FIRST-ORDER LOGIC

(iii) A = V , where G = 〈V,E〉 is a graph with set of vertices V and set of
edges E.

E = {(x, y) ∈ V 2 : x and y are connected by an edge} (binary)

F =

{
(x, y) ∈ V 2 :

x and y are connected by a path
x0 = x, x1, . . . , xn−1, xn = y.

}
(binary)

Remark. If R ⊆ An is an n-ary relation, we also view R as expressing a
property of n-tuples (a1, . . . , an) ∈ An and we often write

R(a1, . . . , an),

instead of

(a1, . . . , an) ∈ R.

Thus R(a1, . . . , an) means that (a1, . . . , an) has property R or satisfies R.
Note that a 1-ary relation is a property of single elements of A, or alternately
just the subset of A containing all elements with that property.

Example 2.1.3 For R, S, T as in examples ?? (i) above:

(i) R(n) means “n is even”

(ii) S(m,n) means “m < n”

(iii) T (m,n, p) means “m ≡ n mod (p)

Remark. Example ?? (ii) above says that S essentially is the familiar “less
than” relation, so we can write “< (a, b)” or even just “a < b” instead of
S(a, b). The same holds true for other familiar binary relations.

Definition 2.1.4 Let again A be any nonempty set. A n-ary function or
operation on A is a map

f : An → A,

in other words, a rule for assigning to each element (x1, . . . , xn) of An (where
each xi ∈ A) an element f(x1, . . . , xn) of A, called the value of the function
at (x1, . . . , xn). We call n the arity of f .

2.1. STRUCTURES 77

Examples 2.1.5
(i) A = N

f(n) = n2 (unary)

g(m,n) = m+ n, (binary)

a(m,n, p) = m+ n mod (p), (ternary)

q(m) = number of distinct primes dividing m (unary)

(ii) A = R
f(a1, . . . , an) = a2

1 + a2
2 + · · ·+ a2

n (n-ary)

(iii) A = all strings of symbols in an alphabet S (which can be an arbitrary
set).

f(s, t) = s t̂ (the concatenation of s and t) (binary)

g(s, t, u) = the result of substituting the leftmost
occurrence of s in u by t, if s occurs in
u; otherwise, u.

(ternary)

By convention we allow also the case n = 0. Since A0 = {∅} (that is, the
only 0-tuple is the empty one), a 0-ary function f is simply an element of A,
i.e. a constant in A. For example, π is a 0-ary function in R.

Remark. On any set A we always have a canonical binary relation, namely
“=” (equality among elements of A).

Remark. We have used the same notation R(a1, . . . , an) to denote that the
relation R is satisfied by the n-tuple (a1, . . . , an) and f(a1, . . . , an) to denote
the value of the function f at the arguments (a1, . . . , an). The context will tell
us with which case we are dealing, so that this shouldn’t cause any confusion.

2.1.B Structures

Definition 2.1.6 A structure consists of a nonempty set, called the universe
of the structure, together with certain relations and functions on this set.

We write structures as

A = 〈A; f, g, h, . . . ;R, S, T, . . . 〉,

78 CHAPTER 2. FIRST-ORDER LOGIC

where A is the universe, f, g, h, . . . are the functions of the structure, and
R, S, T, . . . are the relations of the structure. Note that A can be finite or
infinite (but not empty), and there can be any number (finite, infinite, or
even zero) of functions, each with any arity n ≥ 0, and any number (finite,
infinite, or zero) of relations, each with any arity n ≥ 1.

A structure codifies a context, of mathematical or other objects, which
we study. The universe of the structure encompasses all the objects under
consideration and the functions and relations of the structure are the basic
or primitive operations and relations between these objects that we want to
study.

Definition 2.1.7 The signature of A is

〈arity(f), arity(g), arity(h), . . . ; arity(R), arity(S), arity(T), . . . 〉.

Examples 2.1.8
(i) The structure of (natural number) arithmetic:

N = 〈N; 0, S,+, ·;<〉.

It has signature
〈0, 1, 2, 2; 2〉.

(Here S(n) = n+ 1 is the “successor” function.)

(ii) The structure of the reals :

R = 〈R; 0, 1,+, ·; 〉.

It has signature
〈0, 0, 2, 2; 〉.

This structure represents the basic algebra of real numbers. If we want
to study something different, such as elementary trigonometry, a more
appropriate structure might be 〈R; 0, 1,+, ·, sin, cos, . . . 〉.

(iii) Let X be an arbitrary set (finite or infinite). Then

〈P (X); ∅,∩,∪;⊆〉,

where P (X) is the collection of all subsets of X, is a structure with
signature

〈0, 2, 2; 2〉.

2.1. STRUCTURES 79

(iv) Many algebraic structures are simply structures in the above sense,
which satisfy certain properties (axioms). For example, a group is a
structure of the form

〈G; e, ·; 〉

of signature 〈0, 2; 〉 satisfying the group laws.

(v) A graph is a structure of the form

〈V ; ;E〉

of signature 〈; 2〉 satisfying the usual conditions.

(vi) Let S be the set of records of employees in some company (contain-
ing, e.g., social security numbers, dates of birth, salary, etc.), let N =
{0, 1, . . . , n} for n a large enough integer, and let

A = 〈S ∪N ; f, g, h;P,Q,R〉,

where

f(x) =

{
the age of the employee with record x if x ∈ S
0 otherwise.

g(x) =

{
the SSN of the employee with record x if x ∈ S
0 otherwise.

h(x) =

{
the salary of the employee with record x if x ∈ S
0 otherwise.

P (x) iff x ∈ S
Q(x) iff x ∈ N

R(x, y) iff x is a supervisor of y.

Then A is a structure of arity 〈1, 1, 1; 1, 1, 2〉. This example shows how
we can include both the objects we want to study (here, the records)
and some basic mathematical tools to use in reasoning about them
(here, some natural numbers) in a single structure.

80 CHAPTER 2. FIRST-ORDER LOGIC

2.1.C Introduction to First-Order Languages

We now want to describe a formal language in which we can express state-
ments about structures. We will give a series of examples showing how to
develop such a language.

Example 2.1.9 Consider the statement:

“The square of an odd number is odd.”

This is a statement about the structure of arithmetic,

N = 〈N; 0, S,+, ·;<〉.

We now introduce the following notation:

x, y, z, . . . variables representing arbitrary natural numbers;
¬,∧,∨,⇒,⇔ the usual propositional connectives;
(,) parentheses;
∃ (there exists), the existential and
∀ (for all) universal quantifier;
= symbol for equality;
0, S,+, ·, < symbols for the operations and relations of N .

In order to write this statement in a formal language using these symbols,
we must first express it in a more precise form:

“For all natural numbers x, if x is odd, then x · x is odd.”

We must further refine this by replacing “x is odd” with

“There exists a natural number y such that x = 2 · y + 1.”

Finally, since 1 and 2 are not constants in the structure of arithmetic, we
must replace them with S(0) and S(S(0)), respectively. We can now express
the above statement in a formal language as:

∀x[∃y(x = S(S(0)) · y + S(0))⇒ ∃z(x · x = S(S(0)) · z + S(0))]

We often use abbreviations, however, such as

S(0) = 1, S(S(0)) = 2, x · x = x2, u · v = uv,

Using these abbreviations, our statement becomes more readable:

∀x[∃y(x = 2y + 1)⇒ ∃z(x2 = 2z + 1)].

2.2. SYNTAX OF FIRST-ORDER LOGIC 81

Example 2.1.10 “Every non-empty subset of N has a least element”.
The appropriate structure here is:

〈N ∪ P (N); N,S,∈, <〉,

where
P (N) = {A : A ⊆ N} = the power set of N

N(a) iff a ∈ N
S(a) iff a ∈ P (N) (i.e., a ⊆ N)

a ∈ b iff a ∈ N, b ∈ P (N), and a is an element of b

a < b iff a, b ∈ N and a is smaller than b

Using the same logical notation as before and symbols N,S,∈, < for the
relations of this structure we can express the previous statement as

∀x[(S(x) ∧ ∃y(y ∈ x))⇒ ∃z(z ∈ x ∧ ∀w(w ∈ x⇒ z = w ∨ z < w))]

2.2 Syntax of First-Order Logic

We will now give a formal definition of the languages which were discussed
by example in section ??.

2.2.A Symbols

Definition 2.2.1 A first-order language has the following set of symbols
(alphabet):

(i) Logical symbols :

x1, x2, x3, . . . (variables)
¬,∧,∨,⇒,⇔ (propositional connectives)
∃,∀ (quantifiers)
(,) (parentheses)
= (equality symbol)

(ii) Non-logical symbols :

82 CHAPTER 2. FIRST-ORDER LOGIC

(a) For each n ≥ 0 a set Fn (which may be empty) of symbols called n-
ary function symbols (or function symbols of arity n). For n = 0,
the symbols in F0 are called constant symbols.

(b) For each n ≥ 1, a set Rn (which may be empty) of symbols called
n-ary relation symbols (or relation symbols of arity n).

Remark. All these sets of symbols are of course assumed to be pairwise
disjoint. The equality symbol = is also a binary relation symbol, but plays
a special role.

Remark. A first-order language is completely determined by its set L =⋃
nFn ∪

⋃
nRn of non-logical symbols (since the set of logical symbols is the

same for all first-order languages).

Examples 2.2.2
(i) An example of a first-order language is L = {c, f, g;R}, where c is

a constant symbol, f a unary function symbol, g a binary function
symbol, and R a binary relation symbol.

(ii) A more meaningful example is the language of arithmetic:

Lar = {0, S,+, ·;<}

where 0 is a constant symbol, S a unary function symbol, + and ·
binary function symbols, and < a binary relation symbol. This is the
language that was used in example ??.

2.2.B Terms

We will now start defining the “grammatically correct” statements of a first-
order language. We begin by defining strings called terms. Each term is
intended to represent a single element of the structure. Terms are defined
recursively as follows.

Definition 2.2.3 (Terms)
(i) Every variable symbol is a term.

(ii) If t1, . . . , tn are terms and f is an n-ary function symbol, then ft1 . . . tn
is a term. Note that if n = 0, i.e. f is a constant symbol, then f is a
term all by itself.

2.2. SYNTAX OF FIRST-ORDER LOGIC 83

Thus we use “Polish notation” to represent terms. (The weight of each
n-ary function symbol is 1− n and that of constant symbols and variables is
1.)

Example 2.2.4 Suppose L contains the constant symbols a, b, the unary
function symbol g and the binary function symbols f, h. Then the following
is a term in this language

fgahbx1.

This can be also represented by a parse tree as follows:

a

g
ga

b x1

hbx1

h

fgahbx1

f

As in section ??, we have unique readability, in the sense that every term
can be uniquely written as: xi, a (constant symbol) or ft1 . . . tn, for uniquely
determined t1, . . . , tn terms and f an n-ary function symbol (n ≥ 1).

To facilitate reading, we will add parentheses and adopt the following
informal notation:

f(t1, . . . , tn) instead of ft1 . . . tn

So we would write the term in the example above as

f(g(a), h(b, x1)).

Also, for familiar binary function symbols f (like +, ·, etc) we will usually
write

(tfs) instead of fts,

and when there is no confusion we will even drop the parentheses and write
tfs.

Finally, we often use x, y, z, . . . for variables instead of x1, x2,

Example 2.2.5 In the language of arithmetic, the following are terms (using
our informal notation, that is):

84 CHAPTER 2. FIRST-ORDER LOGIC

(x+ y) · z (instead of ·+ xyz)
(x · x) + (y · y)
((x · x) · x+ S(0) · x) + S(S(0))

In fact, all terms in this language are polynomials in several variables with
coefficients in N. We can view terms in arbitrary languages as “generalized
polynomials.”

Notation. If the variables occurring in a term t are among x1, . . . , xn, we
indicate this by writing t(x1, . . . , xn). Note that this does not mean that all
of x1, . . . , xn occur in t. If u1, . . . , un are terms, then

t[x1/u1, . . . , xn/un]

denotes the result of substituting each variable xi in t by ui. By induction
on the construction of t, this is also a term.

Example 2.2.6 If

t(x, y) is f(g(x), h(a, y)),

then

t[x/g(a), y/h(a, x))] is f(g(g(a)), h(a, h(a, x)).

2.2.C Well-Formed Formulas

We can now define the statements in first-order languages, which we again call
(well-formed) formulas (wffs). We start with the simplest possible formulas.

Definition 2.2.7 An atomic formula is any string of the form

Rt1 . . . tn

with R an n-ary relation symbol and t1, . . . , tn terms.

Example 2.2.8 Let L = {a, b, f, g, R}, a, b constant symbols, f a unary
function symbol, g a binary function symbol, R a ternary relation symbol.
The following are atomic formulas in this language:

Rfagxay, = gxyfa

2.2. SYNTAX OF FIRST-ORDER LOGIC 85

Example 2.2.9 Let L = {<}, < a binary relation symbol. Then the fol-
lowing is an atomic formula:

< xy.

Again we have unique readability: every atomic formula is of the form
Rt1 . . . tn for uniquely determined R, t1, . . . , tn.

And as we did with terms, we adopt various convenient informal nota-
tions. We write

R(t1, . . . , tn) instead of Rt1 . . . tn.

For familiar binary relation symbols R (like =, <), we write

(tRs) instead of Rts,

and when there is no chance of confusion we often omit the parentheses as
well, writing tRs. So in example ?? we would write R(f(a), g(x, a), y) and
(g(x, y) = f(a)), and in example ?? we would write (x < y) or even x < y.

Finally, we are ready to define:

Definition 2.2.10 (Well-Formed Formulas)
(i) Every atomic formula is a wff.

(ii) If A,B are wff, so are ¬A, (A ∧B), (A ∨B), (A⇒ B), (A⇔ B).

(iii) If A is a wff and xi a variable, then ∃xiA, ∀xiA are wff.

Examples 2.2.11
(i) Let L = {<}, < a binary relation symbol. Then

∀x∃y(x < y)

is a wff, as is justified by the following parsing sequence:

(x < y), ∃y(x < y), ∀x∃y(x < y).

(ii) In the same language,

∀x∀y∀z((x < y) ∧ (y < z)⇒ (x < z))

is a wff, as justified by the following parsing sequence:

(x < y), (y < z), (x < z), (x < y) ∧ (y < z),

86 CHAPTER 2. FIRST-ORDER LOGIC

((x < y) ∧ (y < z)⇒ (x < z))︸ ︷︷ ︸
A

, ∀zA, ∀y∀zA, ∀x∀y∀zA.

We can also represent any wff by a parse tree. For (ii) this would be

(x < y) (y < z)

(x < y) ∧ (y < z)

∧
x < z

A
⇒

∀z

∀zA
∀y

∀y∀zA
∀x

∀x∀y∀zA

(iii) L = {R,Q, S}, with R ternary and Q,S unary relation symbols. The
following is a formula:

∃x(∀yR(x, y, z)⇒ (¬Q(x) ∨R(y))).

Yet again we have unique readability: every formula is in exactly one of
the forms:

(i) atomic;

(ii) ¬A, (A ∧ B), (A ∨ B), (A ⇒ B), (A ⇔ B) for uniquely determined
A,B;

(iii) ∃xiA, ∀xiA for uniquely determined xi, A.

Definition 2.2.12 A subformula of a formula A is any formula occurring in
the parse tree of A.

2.2. SYNTAX OF FIRST-ORDER LOGIC 87

2.2.D Scope and Free Variables

Proposition 2.2.13 Let A be a wff, Q be either ∃ or ∀, x a variable. For
any occurrence of the string Qx in A we have A = SQxBT , where S, T are
strings and B is a uniquely determined wff called the scope of this occurrence
of Qx.

Example 2.2.14 P (x, y)⇒ ∀x [∃y R(x, y)︸ ︷︷ ︸
scope

⇒ ∀xQ(x, y)]︸ ︷︷ ︸
scope︸ ︷︷ ︸

scope

Example 2.2.15 ∃y ∀x [∃y R(x, y)︸ ︷︷ ︸
scope

⇒ Q(x, y)]

︸ ︷︷ ︸
scope︸ ︷︷ ︸

scope

Proof of proposition ??. It is easy to prove by induction on the con-
struction of A that for any occurrence of Qx in A we have A = SQxBT for
some wff B and some strings S, T . Uniqueness follows from the fact that a
proper nonempty initial segment of a wff is not a wff (see Assignment #6).a

Definition 2.2.16 An occurrence of a variable x in a formula A is bound if it
occurs in a substring of the form QxB, where B is the scope of x. Otherwise
this occurrence is called free.

Example 2.2.17 In example ?? the first occurrences of x, y and the last
occurrence of y are free. All the other occurrences are bound. In example ??,
all occurrences are bound.

Definition 2.2.18 A variable x is free in a wff A if it has at least one free
occurrence. It is bound if it has at least one bound occurence.

Note that a variable can be both free and bound. This is in contrast to
a single occurrence of a variable, which is either one or the other.

Example 2.2.19 In example ??, x, y are both free and bound. In ?? x, y
are bound but not free. In R(x, y) they are free but not bound. In ∃xR(x, y),
x is bound and not free, and y is free but not bound.

88 CHAPTER 2. FIRST-ORDER LOGIC

Remark. This should be compared with a notation such as
∫

(x2 + y)dx.
Here x is “bound” and y is “free.”

Bound variables are sometimes called “dummy variables,” since they can
be replaced with a different variable (which does not appear elsewhere)
without changing the meaning of the formula. That is,

∫
(x2 + y)dx and∫

(t2 +y)dt are equivalent. And once we define equivalence of wffs, pairs such
as ∀x(x < y) and ∀z(z < y) will be equivalent as well: see fact ??.

Notation. A(x1, . . . , xn) means that the free variables of A are among
x1, . . . , xn. So in example ??, we would write A(x, y).

Definition 2.2.20 A sentence is a wff with no free variables.

Example 2.2.21 ∀x∃y(x < y) is a sentence, as is example ??, but 0 < x is
not, nor is example ??.

2.3 Semantics of First-Order Logic

Now we will connect the first-order languages to the structures we intended
them to represent.

2.3.A Structures and Interpretations

Definition 2.3.1 Let L =
⋃
n≥0Fn ∪

⋃
n≥1Rn be a first-order language. A

structure M for L consists of:

(i) a nonempty set M (the universe of this structure)

(ii) an n-ary function fM : Mn → M for each f ∈ Fn. (For n = 0, i.e.
a ∈ F0 is a constant symbol, aM is simply an element of M .)

(iii) an m-ary relation RM ⊆Mm for each R ∈ Rm.

We write this as

M = 〈M, {fM}f∈S
n≥0 Fn , {RM}R∈S

n≥1Rn〉,

and call fM the interpretation of f and RM the interpretation of R in M.

2.3. SEMANTICS OF FIRST-ORDER LOGIC 89

Example 2.3.2 If

L = {
function symbols︷ ︸︸ ︷

a, f, g ;

relation symbols︷︸︸︷
S,R }

(a is a constant; f unary; g binary; S binary, R ternary), then a structure
for L has the form

M = 〈M ; aM, fM, gM;SM, RM〉,

with aM ∈M, fM : M →M, gM : M2 →M, SM ⊆M2, RM ⊆M3.

Example 2.3.3 Let Lar = {0, S,+, ·, <} be the language of arithmetic.
Then

N = 〈N ; 0, S,+, ·;<〉
is a structure for Lar called the standard structure of this language. Another
structure for this language is

A = 〈A; 0A, SA,+A, ·A;<A〉,

where A = R, 0A = π, SA(a) = ea,A+A b = a + b, a ·A b = a · b, a <A b iff
b = cos(a).

Given a structure M = 〈M, . . . 〉 for L, we can assign to each term
t(x1, . . . , xn) of L an n-ary function tM : Mn →M by recursion as follows:

(i) If t is a variable xi, then i ≤ n, and we let tM(a1, . . . , an) = ai.

(ii) If t is a constant c, then tM(a1, . . . , an) = cM.

(iii) If t = f(t1, . . . , tk), then

tM(a1, . . . , an) = fM(tM1 (a1, . . . , an), . . . , tMk (a1, . . . , an)).

Definition 2.3.4 We call tM(a1, . . . , an) the evaluation or interpretation of
t at a1, . . . , an in M.

Remark. If t = t() has no variables, then tM is simply an element of M.

Remark. If t = t(x1, . . . , xn), then also t = t(x1, . . . , xn, xn+1, . . . , xk) for
any k > n and strictly speaking we have an infinite list of functions tMn ,
one for each n such that all the variables of t are among x1, . . . , xn. Notice
however that for n < k, tMn (a1, . . . , an) = tMk (a1, . . . , an, an+1, . . . , ak).

90 CHAPTER 2. FIRST-ORDER LOGIC

Example 2.3.5 Let Lar = {0, S,+, ·, <} and N = 〈N; 0, S,+, ·;<〉 its stan-
dard structure. Then if

t(x, y) = (x · x+ y) + S(S(0)),

we have

tN : N2 → N,
tN (a, b) = a2 + b+ 2.

2.3.B Models and Validities

Now let L be a first-order language, A a wff in L, M a structure for L, and
consider an assignment xi 7→ ai which associates with each variable xi an
element ai of M (the universe of M).

Definition 2.3.6 We say that A is true inM under this assignment, which
we write

M, a1, a2, . . . |= A,

if the following recursive definition is satisfied:

(i) If A is atomic, say A = R(t1, . . . , tk), with ti = ti(x1, . . . , xn), then

M, a1, a2, . . . |= A iff RM(tM1 (a1, . . . , an), . . . , tMk (a1, . . . , an)).

Here we understand that if R is the equality symbol =, then =M is the
equality on M , so

M, a1, a2, . . . |= t1 = t2 iff tM1 (a1, . . . , an) = tM2 (a1, . . . , an).

(ii) M, a1, a2, . . . |= ¬A iff it is not the case that M, a1, a2, . . . |= A (i.e.
M, a1, a2, · · · 6|= A)

M, a1, a2 . . . |= A ∧B iff M, a1, a2, . . . |= A and M, a1, a2, . . . |= B

M, a1, a2 . . . |= A ∨B iff M, a1, a2, . . . |= A or M, a1, a2, . . . |= B

M, a1, a2 . . . |= A⇒ B iff M, a1, a2, · · · 6|= A or M, a1, a2, . . . |= B

M, a1, a2 . . . |= A ⇔ B iff either M, a1, a2 . . . |= A,B or
M, a1, a2 · · · 6|= A,B

2.3. SEMANTICS OF FIRST-ORDER LOGIC 91

(iii) M, a1, a2, . . . , ai, . . . |= ∃xiA iff for some bi ∈M ,

M, a1, a2, . . . , ai−1, bi, ai+1, . . . |= A;

M, a1, a2, . . . , ai, . . . |= ∀xiA iff for all bi ∈M ,

M, a1, a2, . . . , ai−1, bi, ai+1, . . . |= A.

It is easy to show by induction on the construction of A, that if

A(x1, . . . , xn)

is given and ai, bi (i = 1, 2, . . .) ∈M are such that ai = bi for all i ≤ n, then

M, a1, a2, . . . |= A iff M, b1, b2, . . . |= A,

so we abbreviate
M, a1, a2, . . . |= A

by
M |= A[a1, . . . , an]

or if we need to be more explicit

M |= A[x1 7→ a1, x2 7→ a2, . . . , xn 7→ an].

We read this as: Mmakes A[a1, . . . , an] true or A is satisfied inM, a1, . . . , an.

Definition 2.3.7 In particular, if A = A() is a sentence (has no free vari-
ables), we simply write

M |= A,

and say that M satisfies A or A is true in M. We also say that M is a
model of A.

Example 2.3.8 Let L = {<} (< a binary relation symbol) andM = 〈N, <〉,
and consider the following wffs:

(i) A : x < y. Then we have

M |= x < y[2, 3] (i.e. 2 < 3)

M |= ¬x < y[2, 1] (i.e. 2 6< 1).

92 CHAPTER 2. FIRST-ORDER LOGIC

(ii) B : ∃x∀y(x < y ∨ x = y), a sentence. Then

M |= ∃x∀y(x < y ∨ x = y). (2.1)

By definition this means that there is a ∈ N so that M |= ∀y(x <
y ∨ x = y)[x 7→ a], and again, by definition, this means that for all
b ∈ N,

M |= (x < y ∨ x = y)[x 7→ a, y 7→ b].

so equation (??) means that for some a ∈ N, and all b ∈ N, a < b or
a = b, i.e. a ≤ b. Clearly a = 0 works.

If on the other hand we take S = 〈Z, <〉, a different model for L, then

S |= ¬∃x∀y(x < y ∨ x = y).

Example 2.3.9 Let Lar = {0, S,+, ·, <} be the language of arithmetic and
N = 〈N, 0, S,+, ·, <} its standard structure. Then the following are true:

N |= ∀x∀y(x+ S(y) = S(x+ y))

N |= ∀x∃y1∃y2∃y3∃y4(x = y1 · y1 + y2 · y2 + y2 · y3 + y4 · y4)

(parentheses omitted by association to the left.) The latter is because every
natural number is the sum of four squares—Lagrange’s Theorem.

N |= ¬∀x∃y∃z(x = y · y + z · z)

(since, e.g., 7 is not the sum of two squares).

N 6|= ∃y(x = y · y) [5].

However, take now the following structure for Lar:

A = 〈R, 0, x 7→ ex,+, ·, <〉.

Then

A 6|= ∀x∀y(x+ S(y) = S(x+ y))

(because a+ eb = ea+b is not always true), and

A |= ∀x∀y(S(x+ y) = S(x) · S(y))

(but N 6|= ∀x∀y(S(x+ y) = S(x) · S(y))).

2.3. SEMANTICS OF FIRST-ORDER LOGIC 93

Definition 2.3.10 If S is a set of sentences, then a structureM satisfies or
models S, in symbols

M |= S,

if M |= A for all A ∈ S.

Definition 2.3.11 If S is a set of sentences and A is a sentence, then S
logically implies A, in symbols

S |= A

if every model M of S is also a model of A.

Definition 2.3.12 If S = ∅ we simply write

|= A,

instead of ∅ |= A, and we say that

A is (logically) valid

This simply means that A is true in every structure M of the language L.

Definition 2.3.13 Two sentences A,B are logically equivalent if {A} |= B
and {B} |= A, or |= A⇔ B. We then write A ≡ B.

Definition 2.3.14 A set of sentences S is satisfiable if it has a model, i.e.
there is a structure M with M |= S.

These notions can be also extended to arbitrary formulas (not necessarily
sentences). A set of formulas S logically implies a formula A, in symbols
S |= A, if for any structure M and each assignment xi 7→ ai ∈ M (= the
universe of M), if all the formulas in S are true, so is A. A formula A is
valid iff |= A. If A = A(x1, . . . , xn), then it is easy to see that A is valid iff
∀x1∀x2 . . . ∀xnA is valid. (We call ∀x1∀x2 . . . ∀xnA the universal closure of
A.) Again A,B are equivalent, in symbols A ≡ B, if |= A ⇔ B. Finally, a
set of formulas S is satisfiable if there is a structure M and an assignment
xi 7→ ai in M satisfying all the formulas in S.

94 CHAPTER 2. FIRST-ORDER LOGIC

Examples 2.3.15
(i) An instance of a tautology is any formula in first-order logic obtained

from a tautology in propositional logic by substituting each proposi-
tional variable pi by a formula Ai.

For instance,

A ∨ ¬A
¬(A ∧B)⇔ (¬A ∨ ¬B)

are instances of tautologies. Clearly, every instance of a tautology is
valid.

(ii) A list of useful valid formulas is given in Appendix ??.

(iii) In general, 6|= ∀y∃xA⇒ ∃x∀yA.
For example, take L = {R}, R a binary relation symbol, and take A to
be R(x, y). Then we claim that

6|= ∀y∃xR(x, y)⇒ ∃x∀yR(x, y).

To see this we must find a structureM for L which fails to satisfy this
sentence. Take

M = 〈Z, RM〉
where RM = ≤, the usual (non-strict) ordering on Z. Then M |=
∀y∃xR(x, y) (i.e. for any b ∈ Z there is a ∈ Z with a ≤ b: that is, given
any integer, there is an integer less than or equal to it). On the other
hand M 6|= ∃x∀yR(x, y) (i.e. it is not true that there is some a ∈ Z
such that for any b ∈ Z, a ≤ b: that is, there is no least integer).

As another counterexample, take L = ∅ and let A be the formula x = y.
If M = 〈M〉 is any structure, with M having more than one element,
then M does not satisfy this sentence.

(iv) In general, 6|= (∀xA⇒ ∀xB)⇒ ∀x(A⇒ B).

Let L = {P,Q}, P,Q unary relation symbols. Let A be P (x), B be
Q(x). Then 6|= (∀xP (x)⇒ ∀xQ(x))⇒ ∀x(P (x)⇒ Q(x)). To see this,
consider the structure M = 〈N, PM, QM〉, where PM(n) iff n is even,
QM(n) iff n is odd. Then M |= ∀xP (x) ⇒ ∀xQ(x), simply because
M 6|= ∀xP (x), but M 6|= ∀x(P (x) ⇒ Q(x)) (because this would mean
that PM ⊆ QM).

2.3. SEMANTICS OF FIRST-ORDER LOGIC 95

(v) If A is a formula, B a subformula of A, B′ ≡ B, and A′ is obtained
from A by substituting B by B′ (not necessarily in all occurrences of
B in A), then A′ ≡ A. (This can be easily proved by induction on the
construction of A.)

If A is a formula, x is a variable and t is a term, we denote by A[x/t] the
formula obtained by substituting every free occurrence of x in A by t.

Example 2.3.16

A : ∃xR(x, y)⇒ P (x, z)

t : g(x, y)

A[x/t] : ∃xR(x, y)⇒ P (g(x, y), z).

Fact 2.3.17 (Alphabetic change of bound variables) If A is a form-
ula, x is a variable and y is a variable not occurring in A, then

∀xA ≡ ∀yA[x/y]

∃xA ≡ ∃yA[x/y].

Remark. The requirement that y not occur in A is crucial, otherwise the
fact is not true. For example, we have

∀xR(x, y) ≡ ∀zR(z, y)

but
∀xR(x, y) 6≡ ∀yR(y, y),

since in the latter case, y already occurs in the formula, so that after substitu-
tion the meaning becomes different. We will discuss this more in section ??.

Fact 2.3.18 Every formula is equivalent to one using only ¬,∧,∃ or only
¬,∧,∀ (more generally only S ∪{∃} or only S ∪{∀}, for any complete set of
connectives S in propositional logic).

This is because for any formula A, we have ¬∀xA ≡ ∃x¬A (i.e. A is
not true for all x iff it fails for a specific x). Equivalently, we also have
∀x¬A ≡ ¬∃xA (i.e. A is false for all x iff it is not true for any x). Using
these facts and corollary ??, we can eliminate all but the desired connectives
and quantifier.

96 CHAPTER 2. FIRST-ORDER LOGIC

2.4 Definability in a Structure

When choosing a language and a structure, we must keep in mind what
objects (functions, relations, constants) of the universe we want to be able
to discuss in the language. Clearly we can discuss any function or relation
for which the language has a symbol, but there are others: for example, we
have seen that any term defines a function as well. Now we ask the question:
which functions and relations in a structure can be defined and discussed in
a given first-order language?

2.4.A First-Order Definability

First, we must say what it means to define something. Let L be a first-order
language and M = 〈M, . . . 〉 a structure for L.

If A(x1, . . . , xn) is a formula of L, the graph of A in M is the n-ary
relation GRMA ⊆Mn defined by

GRMA (a1, . . . , an) iff M |= A[a1, . . . , an].

Example 2.4.1 Let L = {+, ·, <} and M = 〈R,+, ·, <}, and consider the
following formulas, with their graphs.

A0 : x = y

GRMA0
= {(a, b) : a = b}

(GRMA0
(a, b) iff a = b)

A1 : x < y

GRMA1
= {(a, b) : a < b}

(GRMA1
(a, b) iff a < b)

A2(x, y) : ∃z(z · z = z ∧ ¬z + z = z ∧ x · x+ y · y = z)

GRMA2
(a, b) iff a2 + b2 = 1

A3(x, y) : ∃z(z · z = z ∧ ¬z + z = z ∧ x · x+ y · y < z)

GRMA3
(a, b) iff a2 + b2 < 1

2.4. DEFINABILITY IN A STRUCTURE 97

A4(x, y, z) : ∃w(w + w = w ∧ x+ y + z = w)

GRMA4
(a, b, c) iff a+ b+ c = 0

A5(x, y) : A3 ∧ (x · x+ y · y < x+ x)

GRMA5
(a, b) iff a2 + b2 < 1 and (a− 1)2 + b2 < 1

Example 2.4.2 Let L = Lar = {0, S,+, ·, <} and N = 〈N, 0, S,+, ·, <},
and consider the formulas:

A(x) : ∃y(x = y · y)

GRNA (a) iff a is a square.

B(x, y) : ∃w∃v[S(S(w)) = x ∧ S(S(v)) = y]∧
∀z[∃p(z · p = x) ∧ ∃q(z · q = y)⇒ z = S(0))]

GRNB (a, b) iff a, b ≥ 2 and a, b are prime to each other (i.e., gcd(a, b) = 1).

It can be shown that there is a formula P (x, y) in Lar such that GRNP (a, b)
iff a is the bth prime number, and also a formula R(x, y, z) such that

GRNR (a, b, c) iff ab = c.

This follows from a clever idea due to K. Gödel that allows us to code in
an appropriate, first-order definable sense, finite sequences of numbers by
numbers.

Definition 2.4.3 A relation R ⊆ Mn is first-order definable if there is a
formula A(x1, . . . , xn) such that R = GRMA , i.e., for any a1, . . . , an ∈M

R(a1, . . . , an) iff M |= A[a1, . . . , an].

A function f : Mn →M is first-order definable if its graph

graph(f) ⊆Mn+1

is first-order definable, i.e. there is a formula A(x1, . . . , xn, xn+1) such that
for all a1, . . . , an, an+1 in M ,

f(a1, . . . , an) = an+1 iff M |= A[a1, . . . , an, an+1].

(If n = 0, an element a ∈ A is first-order definable if there is a formula A(x)
such that a is the unique element of M with

M |= A[a].)

98 CHAPTER 2. FIRST-ORDER LOGIC

Examples 2.4.4
(i) If f is a function symbol in L, then fM is definable by the formula

f(x1, . . . , xn) = xn+1.

If R is a relation symbol in L, then RM is definable by the formula

R(x1, . . . , xn).

If t is a term, say t is t(x1, . . . , xn), then tM is definable by the formula

t = xn+1.

(ii) The definable relations in M form a Boolean algebra, i.e., are closed
under ∼,∪,∩, where if R ⊆Mn,

∼ R ⊆Mn and ∼ R = Mn \R,

and if R, S ⊆ Mn, then R ∩ S, R ∪ S have their usual meaning. This
is clear, since if R is defined by A, then ∼ R is defined by ¬A and
if R, S are defined by B,C, resp., then R ∩ S, R ∪ S are defined by
B ∧ C, B ∨ C, resp.

(iii) The definable relations inM are closed under projection. If R ⊆Mn+1

is defined by A(x1, . . . xn, xn+1), then proj(R) = {(a1, . . . , an): for some
an+1, R(a1, . . . , an+1)} is defined by ∃xn+1A(x1, . . . , xn, xn+1).

Example 2.4.5 Let L = {+, ·, <} and M = 〈R,+, ·, <}.
First we check, by induction, that every integer n ∈ Z is definable. The

most important integers, of course, are 0 and 1:

0 : x+ x = x (A0(x))

1 : x · x = x ∧ ¬x+ x = x(A1(x))

Now assume a formula An(x) defines n (inM). Then the formula ∃y∃z(x =
y + z ∧ An(y) ∧ A1(z)) (An+1(x)) defines n + 1. So by induction, any n ≥ 0
is definable by a formula An(x). Consider now the formula

A−n(x) : ∃y∃z(A0(z) ∧ An(y) ∧ x+ y = z)

This defines −n. So every integer can be defined.

2.4. DEFINABILITY IN A STRUCTURE 99

One can then show that every rational number is definable, and (though
this is a bit trickier) so is every algebraic number (solution of polynomial
with integer coefficients).

Using this, it follows that all finite unions of intervals with algebraic
endpoints are definable. It turns out that this is it, i.e. every definable unary
relation (set) is a finite union of intervals with algebraic endpoints.

For binary, ternary, or higher order relations things are more complicated,
but it turns out that every definable relation is a Boolean combination of
relations that can be defined using polynomial equations or inequalities with
integer coefficients, as for example:

(x · x+ y · y < z ∧ x · x · x = y · y + z) ∨ x · y + y · z < x · y · z.

Every polynomial function with integer coefficients is definable (but there
are more complex definable functions than polynomials). For example, the
polynomial function f(a, b, c) = 2a2 − b+ c2 is definable by the formula

A(x, y, z, w) : ∃p∃q(A2(p) ∧ A−1(q) ∧ w = p · x · x+ q · y + z · z).

Another formula that defines the graph of f is

B(x, y, z, w) : y + w = x · x+ x · x+ z · z.

Example 2.4.6 Let L = Lar = {0, S,+, ·, <} and N = 〈N, 0, S,+, · <
〉. Again any polynomial function with coefficients in N is definable, but
it turns out that much more complicated functions are definable, e.g. mn,
i 7→ pi = the ith prime, etc. In fact, every standard function one studies in
number theory is definable. (This is by no means obvious—try to define the
exponential function, as an example.) Similarly all the ordinary relations,
e.g. “n is prime”, are definable. In fact “n is prime” is definable by the
following formula:

A(x) : S(0) < x ∧ ∀y∀z(y · z = x⇒ y = S(0) ∨ z = S(0)).

Remark. Assuming that the language L has only countably many symbols
(i.e. the non-logical symbols in L can be enumerated in a sequence), there are
only countably many definable relations and functions in each given struc-
ture M for L. Since in any structure whose universe is infinite, there are
uncountably many possible relations and functions, the definable ones form
a very small subset of these. But so far, we have not seen even one example
of a non-definable relation.

100 CHAPTER 2. FIRST-ORDER LOGIC

Definition 2.4.7 Let L be a first-order language andM = 〈M, . . . 〉 a struc-
ture for L. A relation R ⊆ Mn is definable with parameters if there is a for-
mula A(x1, . . . , xn, xn+1, . . . , xn+m), m ≥ 0, and fixed p1, . . . , pm ∈ M (the
parameters), such that

R(a1, . . . , an) iff M |= A[a1, . . . , an, p1, . . . , pm].

Example 2.4.8 Let L = {+, ·, <} andM = 〈R,+, ·, <〉. Consider an inter-
val (b, c) ⊆ R. For arbitary b, c this may not be definable, but it is always
definable with parameters:

A(x, y, z) : y < x ∧ x < z

a ∈ (b, c) iff M |= A[a, b, c︸︷︷︸
parameters

]

Similarly, a function f : Mn →M is definable with parameters whenever
its graph is definable with parameters. Notice also that every element of M
is definable with parameters; one parameter suffices (that element).

Example 2.4.9 In example ??, every polynomial function is definable with
parameters.

2.4.B Isomorphisms

We will next discuss a method for showing that certain relations are not
definable.

Definition 2.4.10 Let L be a first order language andM1 = 〈M1, . . . 〉 and
M2 = 〈M2, . . . 〉 be two structures of L. An isomorphism ofM1 withM2 is
a map π : M1 →M2 which is one-to-one and onto (i.e. a bijection of M1,M2)
and such that for each n-ary function symbol f in L,

π(fM1(a1, . . . , an)) = fM2(π(a1), . . . , π(an)),

for all a1, . . . , an ∈M1, and for any m-ary relation symbol R in L,

RM1(a1, . . . , am) iff RM2(π(a1), . . . , π(am)),

for all a1, . . . , am ∈M1.

2.4. DEFINABILITY IN A STRUCTURE 101

We denote this by
π :M1

∼=M2

Clearly also
π−1 :M2

∼=M1.

Example 2.4.11 Let L = {f ;R} with f a binary function symbol and R a
binary relation symbol, and consider the structures

M1 = 〈R+, ·, <〉 (i.e. · = fM1 , < = RM1)

M2 = 〈R,+, <〉 (i.e., + = fM2 , < = RM2)

where R+ = {α ∈ R : α > 0}. Let π : R+ → R be given by π(a) = ln a.
Then π :M1

∼=M2 and π−1(a) = ea.

We now have the following basic fact.

Theorem 2.4.12 If π : M1
∼= M2 and A(x1, . . . , xn) is any formula, then

for any a1, . . . , an ∈M1,

M1 |= A[a1, . . . , an] iff M2 |= A[π(a1), . . . , π(an)].

Proof. First show by induction on the construction of the term t, that if t
is t(x1, . . . , xn), then

π(tM1(a1, . . . , an)) = tM2(π(a1), . . . , π(an))

for any a1, . . . , an ∈ M1. Then the theorem can be proved by induction on
the construction of A. a

Definition 2.4.13 If M1 = M2 = M, we call any isomorphism π : M ∼=
M an automorphism of M.

Example 2.4.14 If M = 〈Q,+, <〉, then π(a) = 3a is an automorphism of
M.

In particular, if π is any automorphism ofM, the preceding theorem says
that for any formula A(x1, . . . , xn) and any a1, . . . , an ∈M

M |= A[a1, . . . , an] iff M |= A[π(a1), . . . , π(an)]

102 CHAPTER 2. FIRST-ORDER LOGIC

i.e. every definable relation is invariant under automorphisms.
Similarly, any definable relation with parameters p1, . . . , pm is invariant

under any automorphism π that fixes the parameters, i.e. π(pi) = pi, i =
1, . . . ,m.

We can use this fact to prove that certain relations are not definable: just
exhibit an automorphism of the structure under which they are not invariant.
Here are some examples.

Application. Consider the language L = ∅ with no nonlogical symbols
and any structure M = 〈M〉 for it. What are the definable subsets (i.e.
unary relations) on M?

Clearly ∅,M are definable (by x 6= x, x = x, resp.). We claim that
these are the only definable subsets of M . Let A be a subset of M , A 6= ∅,
A 6= M , and let a ∈ A, b 6∈ A. Let π : M → M be the bijection such that
π(a) = b, π(b) = a and π(c) = c if c 6∈ {a, b}. Then π is an automorphism of
M but A is not invariant under π, so A is not definable.

What are the definable with parameters subsets of M? Clearly any finite
subset {a1, . . . , an} ⊆ M is definable by the formula

x = x1 ∨ · · · ∨ x = xn

and parameters a1, . . . , an (for x1, . . . , xn). But then every co-finite (comple-
ment of finite) subset of M is definable with parameters. We claim these are
the only ones. Let A ⊆ M be neither finite or co-finite. Assume it is defin-
able with parameters p1, . . . , pn. Since A is neither finite nor co-finite, there
is some element of A, say a, distinct from all p1, . . . , pn and some element
of M \ A, say b, distinct from p1, . . . , pn. Let π(pi) = pi, π(a) = b, π(b) =
a, π(c) = c if c 6∈ {p1, . . . , pn, a, b}. Then π is an automorphism of M that
fixes the parameters, but does not leave A invariant, a contradiction.

Application. N is not definable in

M = 〈R, 0, 1, ·, <〉

Indeed, π(a) = a3, is an automorphism ofM but it does not leave N invariant,
i.e., a ∈ N iff π(a) ∈ N clearly fails. (It turns out that N is not even definable
in 〈R, 0, 1,+, ·, <}, even though each integer is.)

Remark. This method of automorphisms does not always apply. For ex-
ample, there are structures which have no automorphisms except the identity

2.5. PRENEX NORMAL FORMS AND GAMES 103

(these are called rigid). An example is

〈N, 0, S〉.

Another is
〈R, 0, 1,+, ·, <〉

So although, for example, it turns out that · is not definable in 〈N, 0, S,+, <〉,
this cannot be shown by the automorphism method.

Remark. By the way, + is definable in 〈N, 0, S, ·〉 since:

a+ b = c iff [(a+ 1)(c+ 1) + 1][b(c+ 1) + 1] = (c+ 1)2[(a+ 1)b+ 1] + 1

i.e. S(S(a) · S(c)) · S(b · S(c)) = S((S(c) · S(c)) · S(S(a) · b))

2.5 Prenex Normal Forms and Games

We will now discuss a “normal form” for first-order wffs which makes many
proofs easier, and follow it with an application to game theory.

2.5.A Prenex Normal Forms

Definition 2.5.1 A formula A (in a fixed language L) is in prenex normal
form (pnf) if A has the form

Q1y1Q2y2 . . . QnynB,

where yi are distinct variables, each Qi is either ∃ or ∀ and B is quantifier-free
(has no quantifers), i.e. it is built from atomic formulas using propositional
connectives only.

We call Q1y1Q2y2 . . . Qnyn the prefix of A and B the matrix of A.

Example 2.5.2
prefix︷ ︸︸ ︷

∀x∀y∃z∃w
matrix︷ ︸︸ ︷

[P (x, z)⇒ ¬Q(y, w)]

(empty prefix) P (x, y) ∨ S(f(x), h(y))︸ ︷︷ ︸
matrix

are in pnf, but

¬∃x[P (x) ∧ ∃y(Q(x, y) ∨ ¬∃zR(x, z))]

is not in pnf.

104 CHAPTER 2. FIRST-ORDER LOGIC

Theorem 2.5.3 For each formula A, we can find a formula A∗ in pnf, log-
ically equivalent to A, i.e., A ≡ A∗.

Proof. We will use the following equivalences. If Q = ∀ (resp. ∃), let
Q̌ = ∃ (resp. ∀); we call Q̌ the dual of Q.

(a) ¬QxA ≡ Q̌x¬A

(b) A ∨ (QxB) ≡ Qx(A ∨B), if x if not free in A

(c) A ∧ (QxB) ≡ Qx(A ∧B), if x is not free in A

(d) (A⇒ QxB) ≡ Qx(A⇒ B), if x is not free in A

(e) (QxA⇒ B) ≡ Q̌x(A⇒ B), if x is not free in B.

(f) Q1y1Q2y2 . . . QnynA ≡ Q1y
′
1Q2y

′
2 . . . Qny

′
nA[y1/y

′
1, . . . , yn/y

′
n],

where A is quantifier-free and y′1 . . . y
′
n are any distinct variables not

appearing in Q1y1Q2y2 . . . QnynA (it is assumed that y1, . . . , yn are dis-
tinct here.)

(g) If in Q1y1Q2y2 . . . QnynA, A quantifier free, a variable yi appears more
than once and Qmyi (m ≤ n) is the rightmost occurrence of yi in the
prefix, then if we eliminate all Qm′yi for m′ < m, we obtain a formula
B equivalent to Q1y1 . . . QnynA.

We now show how to construct A∗ by recursion.

• If A is atomic, we simply take A∗ = A.

• Assume A∗, B∗ have been constructed, and consider ¬A, A ∧ B, A ∨
B, A⇒ B, A⇔ B.

We can eliminate the last case, A ⇔ B, simply by replacing it by
(A⇒ B)∧(B ⇒ A). We do this because there is no simple equivalence
corresponding to ??–?? for ⇔, so it would be rather complicated to
consider separately. (We could also eliminate ⇒ and one of ∧ and ∨
as well, but this does not seem to offer any great advantage.) We will
construct, therefore, (¬A)∗, (A ∧B)∗, (A ∨B)∗, and (A⇒ B)∗.

2.5. PRENEX NORMAL FORMS AND GAMES 105

Let

A∗ : Q1y1 . . . QnynC

B∗ : Q′1z1 . . . Q
′
mzmD.

Then, by applying (??) n times we see that

¬A ≡ ¬A∗

≡ Q̌1y1Q̌2y2 . . . Q̌nyn¬C

so (¬A)∗ = Q̌1y1 . . . Q̌nyn¬C.

Also

A ∧B ≡ A∗ ∧B∗

≡ Q1y1 . . . QnynC ∧Q′1z1 . . . Q
′
mzmD.

Using (??) we have that

Q′1z1 . . . Q
′
mzmD ≡ Q′1u1 . . . Q

′
mumD[z1/u1, . . . zm/u1]

where u1, . . . , um are variables distinct from all of the variables in
Q1y1 . . . QmymC and Q′1z1 . . . Q

′
mzmD. Thus

A ∧B ≡ Q1y1 . . . QnynC ∧Q′1u1 . . . Q
′
mumD[z1/u1 . . . zm/um]

≡ Q′1u1 . . . Q
′
mum(Q1y1 . . . QnynC ∧D[z1/u1, . . . , zm/um])

by repeatedly using (??). Now let v1, . . . , vn be distinct variables not
appearing in Q1y1 . . . QnynC and D[z1/u1, . . . , zm/um]. Then by us-
ing (??) and (??) (and the fact that P ∧Q ≡ Q ∧ P) we have

A ∧B ≡ Q′1u1 . . . Q
′
mum(Q1v1 . . . QnvnC[y1/v1, . . . , yn/vn]∧

D[z1/u1, . . . , zm/um])

≡ Q′1u1 . . . Q
′
mumQ1v1 . . . Qnvn(C[y1/v1, . . . , yn/vn]∧

D[z1/u1, . . . , zm/um]),

and this last formula is by definition (A ∧B)∗.

The cases of (A ∨B)∗ and (A⇒ B)∗ are similar, using (??)-(??).

106 CHAPTER 2. FIRST-ORDER LOGIC

• Finally, assume A∗ is defined and consider ∃xA and ∀xA. If A∗ =
Q1y1 . . . QnynC, then

∃xA ≡ ∃xA∗

≡ ∃xQ1y1 . . . QnynC.

If x is different from all y1, . . . , yn we simply take

(∃xA)∗ = ∃xQ1y1 . . . QnynC.

Otherwise, using (??), we take

(∃xA)∗ = Q1y1 . . . QnynC

The case of (∀xA)∗ is similar. a

Example 2.5.4 Let A be the formula:

¬∃x(P (x)⇒ ∃y(Q(z, y) ∨ ¬∃zR(x, z))).

The following sequence of steps transforms it in pnf.

¬∃x(P (x)⇒ ∃y(Q(z, y) ∨ ¬∃zR(x, z)))

¬∃x(P (x)⇒ ∃y(Q(z, y) ∨ ∀z¬R(x, z)))

¬∃x(P (x)⇒ ∃y∀z′(Q(z, y) ∨ ¬R(x, z′)))

¬∃x∃y∀z′(P (x)⇒ (Q(z, y) ∨ ¬R(x, z′)))

∀x∀y∃z′¬(P (x)⇒ (Q(z, y) ∨ ¬R(x, z′)))

Remark. Of course the matrix of a formula is pnf can always be replaced,
up to ≡, with one which is in disjunctive or conjunctive normal form (on
atomic formulas).

If A = Q1y1 . . . QnynB, is a formula in pnf we can group together consec-
utive similar quantifiers and write it in one of the forms

∃z̄1∀z̄2 · · ·Qz̄nB or ∀z̄1∃z̄2 . . . Qz̄nB,

where z̄i = zi1, . . . , z
i
ki

is a string of variables and Qz̄i is an abbreviation for
Qzi1Qz

i
2 . . . Qz

i
ki

(where Q is ∃ or ∀).

2.5. PRENEX NORMAL FORMS AND GAMES 107

Example 2.5.5
∃y1∃y2∀y3∃y4∃y5B(y1, . . . , y5)

will be written as
∃y1, y2∀y3, y4∃y5B(y1, . . . , y5)

and
∀y1∃y2∃y3∃y4∀y5∀y6B(y1, . . . , y6)

as
∀y1∃y2, y3, y4∀y5, y6B(y1, . . . y6).

2.5.B Games and Strategies

Let M be a structure for the language L in which A is a sentence in prenex
normal form. We will reformulate the statementM |= A in terms of a game.
For simplicity, we will assume that A is a sentence of the form

A : ∃z1 ∀z2∃z3 . . . ∀z2nB(z1, . . . , z2n).

Obvious modifications can be made to handle the general case.
We associate with M, A a game GMA played as follows: We have two

players called ∃ and ∀. ∃ plays first an arbitrary element a1 ∈ M . Then ∀
plays an arbitrary element a2 ∈ M . ∃ plays then a3 ∈ M , ∀ plays a4 ∈ M ,
etc., for a total of 2n moves. We say that ∃ wins this run of the game if

M |= B[z1 7→ a1, . . . , z2n 7→ a2n]

and ∀ wins this run of the game if

M |= ¬B[z1 7→ a1, . . . , z2n 7→ a2n].

∃ ∀
a1

a2

a3

a4
...

...
a2n−1

a2n

It is assumed in this game that each player can see the opponent’s previous
moves (i.e. when ∀ plays a2, he knows a1 etc.).

108 CHAPTER 2. FIRST-ORDER LOGIC

Fact 2.5.6 (i) M |= A iff ∃ has a winning strategy in GMA .

(ii) M |= ¬A iff ∀ has a winning strategy in GMA .

Proof. Assume M |= A, i.e. M |= ∃z1∀z2 . . . ∀z2nB(z1, . . . , z2n). Then
there is a1 ∈M such that

M |= ∀z2∃z3 . . . ∀z2nB(z1, . . . , z2n)[z1 7→ a1].

∃ starts by playing a fixed such a1. Then for any a2 ∈ M that ∀ could play
in his next move, we have

M |= ∃z3∀z4 . . . ∀z2nB(z1, . . . , z2n)[z1 7→ a1, z2 7→ a2].

Thus ∃ can respond by playing some a3 so that

M |= ∀z4 . . . ∀z2nB(z1, . . . , z2n)[z1 7→ a1, z2 7→ a2, z3 7→ a3],

and so on. By induction, if ∃ follows this strategy, once a1, a2, . . . , a2n have
been played, then M |= B[z1 7→ a1, . . . , z2n 7→ a2n], i.e. ∃ has won.

If on the other hand M |= ¬A, then since

¬A = ¬∃z1∀z2 . . . ∀z2nB(z1, . . . , z2n)

≡ ∀z1∃z2 . . . ∃z2n¬B(z1, . . . , z2n),

we have
M |= ∀z1∃z2 . . . ∃z2n¬B(z1, . . . , z2n).

So assume now ∃ starts with an arbitrary a1 ∈M . Then we have

M |= ∃z2∀z3 . . . ∃z2n¬B(z1, . . . , z2n)[z1 7→ a1].

So ∀ can respond by playing some a2 such that

M |= ∀z3∃z4 . . . ∃z2n¬B(z1, . . . , z2n)[z1 7→ a1, z2 7→ a2]

etc., as before. If ∀ follows this strategy, at the end of this run we will have
a1, a2, . . . , a2n such that

M |= ¬B[z1 7→ a1, . . . , z2n 7→ a2n],

so ∀ has won.

2.5. PRENEX NORMAL FORMS AND GAMES 109

Since it is clear that it cannot be that both ∃ and ∀ have winning strategies
in GMA (otherwise they can play their winning strategies against each other
and then they both will win, which is impossible), it follows that if ∃ has a
winning strategy in GMA , then we cannot have M |= ¬A, so we must have
M |= A. Similarly, in case ∀ has a winning strategy, we have M |= ¬A, so
we are done. a

Example 2.5.7 Consider the sentence A:

∃x1∀x2∃x3(x3 + x3 = x2 ∨ x3 + x3 = x2 + x1)

Let M = 〈N,+〉. Then the game GMA is as follows

∃ ∀
a1

a2

a3

where ∃ wins if 2a3 = a2 ∨ 2a3 = a1 + a2, otherwise ∀ wins. Then ∃ has the
following winning strategy (and hence M |= A):
∃ starts with a1 = 1. Then after ∀ plays an arbitrary a2, ∃ responds by

playing a3 = a2

2
, if a2 is even, and by a3 = a2+1

2
, if a2 is odd.

Using this interpretation, we can give an application of first-order logic
to game theory.

Definition 2.5.8 A finite game is determined by a set M and a relation
R ⊆ Mk (k = 1, 2, . . .). Take for simplicity k = 2n to be even. The game
is played as follows: We have two players, I, II which take turns in playing
a1, a2, . . . , a2n−1, a2n in M . I wins this run of the game if R(a1, . . . , a2n).
Otherwise II wins (i.e. if R(a1, . . . , a2n) fails).

I II
a1

a2

a3

a4
...

...
a2n−1

a2n

110 CHAPTER 2. FIRST-ORDER LOGIC

We can use fact ?? to prove the following:

Theorem 2.5.9 (Zermelo, von Neumann) Every finite game is deter-
mined, i.e. one of the two players has a winning strategy.

Proof. Consider the language with one 2n-ary relation symbol R̄ and let
M be its structure

M = 〈M,R〉,
(i.e. R = R̄M). Let A be the sentence

∃x1∀x2 . . . ∃x2n−1∀x2nR̄(x1, . . . , x2n).

Clearly GMA is the above finite game, with I=∃ and II=∀, so by fact ??,
if M |= A, I has a winning strategy, while if M |= ¬A, II has a winning
strategy, and since either M |= A or M |= ¬A, one of the two must have a
winning strategy. a
Remark. One could also define basically finite games. Here we have a set
M and for each n a (possibly empty) relation Rn ⊆ Mn. Let R =

⋃
nRn.

Players I and II alternate playing elements ai of M as before. In order for the
game to be basically finite, two conditions need to hold: (1) At each move, a
player has only finitely many possibilities, and (2) the game always ends after
finitely many stages, when the output (a1, a2, . . . , an) thus produced does not
belong to R. The last player to have played loses. An easy application of
König’s lemma shows that if a game if basically finite then there is an n such
that each play of the game lasts at most n moves. It then follows from the
argument of the Zermelo-von Neumann theorem that basically finite games
are also determined.

One can continue this line of argument and analyze infinite determined
games, but we will not pursue this road here.

2.6 Theories

Let S be a set of sentences in a fixed first-order language L. We denote by
Con(S) the set of all sentences which are logical consequences of S, i.e.

Con(S) = {A : S |= A,A a sentence}.

Notice that Con(Con(S)) = Con(S), i.e. Con(S) is closed under logical con-
sequences.

2.6. THEORIES 111

Definition 2.6.1 A set of sentences T is called a theory if it is closed under
logical consequences, i.e. iff T = Con(T).

Definition 2.6.2 If Con(S) = T , we say that S is a set of axioms for the
theory T . Note that in this case S and T have exactly the same models.

Example 2.6.3 Consider L = {<}, < a binary relation symbol. The theory
of partial order has as axioms:

(1) ∀x∀y(x < y ⇒ ¬y < x) (antisymmetry)
(2) ∀x∀y∀z(x < y ∧ y < z ⇒ x < z) (transitivity)

A model 〈M,<〉 of this theory is called a partially ordered set (or just partial
order). If we add the axiom:

(3) ∀x∀y(x < y ∨ x = y ∨ y < x) (linearity)
we obtain the theory of linear order, whose models are called linearly ordered
sets (or just linear orders).
The theory of dense linear order is obtained by adding two more axioms:

(4) ∃x∃y(x 6= y)
(5) ∀x∀y(x < y ⇒ ∃z(x < z ∧ z < y)) (density)

Examples of models of this theory (i.e., dense linear orders) are 〈Q, <〉,
〈R, <〉. Examples of linear orders which are not dense are 〈Z, <〉 and 〈N, <〉.
Finally the theory of dense linear orders without endpoints is obtained by
adding the axioms:

(6) ∀x∃y(x < y)
(7) ∀x∃y(y < x).

Models of these are again 〈R, <〉, 〈Q, <〉, but not 〈[0, 1], <〉.

Remark. A well ordered set (or wellorder) is a linear order 〈M,<〉 with
the following additional property: Every non-empty set S ⊆ M has a least
element, e.g. 〈N, <〉. It turns out that one cannot express this by axioms in
first-order logic, i.e. there is no set of axioms S in the first-order language
{<} whose models are exactly the wellorders. This will follow from the
Compactness Theorem, that we will prove later on.

Example 2.6.4 Consider L = {E}, E a binary relation symbol. The theory
of (undirected) graphs has as axioms

(1) ∀x¬(xEx)
(2) ∀x∀y(xEy ⇒ yEx)

A model of this theory is a graph.

112 CHAPTER 2. FIRST-ORDER LOGIC

Remark. It turns out again that there is no set of axioms in first-order
logic whose models are exactly the connected graphs. Similarly for trees, i.e.
connected acyclic graphs.

Example 2.6.5 Let L = {e, ·}, e a constant symbol and · a binary relation
symbol. The theory of groups has the following axioms:

(1) ∀x∀y∀z(x · (y · z) = (x · y) · z) (associativity)
(2) ∀x(x · e = x ∧ e · x = x) (identity)
(3) ∀x∃y(x · y = e ∧ y · x = e) (existence of inverses)

A model of this theory is called a group, e.g. 〈Z, 0,+〉, or 〈R+, 1, ·〉, where

R+ = {x ∈ R : x > 0}.

The theory of abelian groups has one more axiom:
(4) ∀x∀y(x · y = y · x) (commutativity)

Examples of abelian groups are 〈Z, 0,+〉, 〈Zm, 0,+〉, etc. Examples of groups
which are not abelian are 〈C([0, 1])◦〉, (functions under composition) and
〈GLn(R), ·〉 (n× n matrices with matrix multiplication).

Example 2.6.6 Let L = {0, 1,+, ·}, 0, 1 constant symbols , +, · binary
function symbols. The theory of commutative rings with identity has the
following axioms:

(1)-(4) Same as the four axioms in example ?? with · replaced by +
and e by 0 (i.e. the axioms for abelian groups for 0,+)

(5) ∀x∀y∀z(x · (y · z) = (x · y) · z) (associativity for ·)
(6) ∀x∀y(x · y = y · x) (commutativity for ·)
(7) ∀x(x · 1 = x) (identity for ·)
(8) ∀x∀y∀z(x · (y + z) = x · y + x · z) (distributivity)

Examples of models of this theory (i.e. commututive rings with identity) are
〈Z, 0, 1,+, ·〉, 〈Q, 0, 1,+, ·〉, 〈Zm, 0, 1,+, ·〉, etc.
The theory of integral domains is obtained by adding the axiom

(9) ∀x∀y(x · y = 0⇒ x = 0 ∨ y = 0) (no zero divisors)
Examples of integral domains are 〈Q, 0, 1,+, ·〉, 〈Z, 0, 1,+, ·〉, 〈Zp, 0, 1,+, ·〉
(p a prime), but not 〈Z6, 0, 1,+, ·〉.
The theory of fields is obtained by adding the axioms:

(10) 0 6= 1
(11) ∀x(x 6= 0⇒ ∃y(x · y = 1)) (existence of inverses for ·)

2.6. THEORIES 113

For example, 〈Q, 0, 1,+, ·〉, 〈R, 0, 1,+, ·〉 are fields, but 〈Z, 0, 1,+, ·〉 is not.
The theory of fields of characteristic zero is obtained by adding the infinite
list of axioms:

(12)2 1 + 1 6= 0
(12)3 1 + 1 + 1 6= 0

...
(12)n 1 + 1 + · · ·+ 1︸ ︷︷ ︸

n

6= 0

for each n ≥ 2. Examples of models of this theory, i.e. fields of characteristic
zero, are 〈Q, 0, 1,+, ·〉, 〈R, 0, 1,+, ·〉, 〈C, 0, 1,+, ·〉 but not 〈Zp, 0, 1,+, ·〉, p a
prime.

Remark. Notice that the theory of fields of characteristic zero has infinitely
many axioms. It turns out that it is not finitely axiomatizable, i.e. it cannot
have a finite set of axioms.

Another way a theory can arise in practice is as follows. Let L be a
first-order language andM as structure for L. The theory ofM, Th(M), is
defined by

Th(M) = {A : A a sentence and M |= A}.

(It is indeed easy to check that Th(M) is a theory.)
Notice that here Th(M) is not given in any meaningful sense in terms

of axioms (except in the trivial way, namely taking these axioms to be the
theory itself). It is often an important problem to find a reasonable set of
axioms for the theory ofM, for various structures of mathematical interest.
In other words, we are looking for some explicit list of sentences true about
M, so that any other one follows logically from them.

Example 2.6.7 Consider L = {0, 1,+, ·} and M = 〈R, 0, 1,+, ·〉. It turns
out that the following is a set of axioms for Th(M):

(1)-(11) the axioms for fields
(12) ∀x∃y(x = y2 ∨ x+ y2 = 0)

(here y2 abbreviates y · y; similarly yn abbreviates y · y · · · · · y︸ ︷︷ ︸
n

)

(13) ∀x∀y∃z(x2 + y2 = z2)
(14) ∀x(x2 6= −1)
(15)n ∀x0 . . . ∀xn(xn 6= 0⇒ ∃y(xn·yn+xn−1·yn−1+· · ·+x1·y+x0 = 0)),

where n = 1, 3, 5 . . . ranges over all odd numbers.

114 CHAPTER 2. FIRST-ORDER LOGIC

Example 2.6.8 For the same L and M = 〈C, 0, 1,+, ·〉, it turns out that a
set of axioms consists of the axioms for fields of characteristic 0 plus all the
axioms (15)n or above but now for n = 1, 2, 3, . . . ranging over all numbers.

Example 2.6.9 Let now Lar = {0, S,+, ·, <} be the language of arithmetic
and N be its standard structure 〈N, 0, S,+, ·, <}. Consider the following set
of axioms, called the first-order Peano axioms (PA):

(1) ∀x(S(x) 6= 0)
(2) ∀x∀y(x 6= y ⇒ S(x) 6= S(y))
(3) ∀x(x+ 0 = x)
(4) ∀x∀y(x+ S(y) = S(x+ y))
(5) ∀x(x · 0 = 0)
(6) ∀x∀y(x · S(y) = x · y + x)
(7)A ∀y1 · · · ∀yn[(A(0, y1, . . . , yn) ∧ ∀x(A(x, y1, . . . , yn)

⇒ A(S(x), y1 . . . yn)))⇒ ∀xA(x, y1, . . . , yn)]
for any formula A(x, y1, . . . , yn). (So this is an infinite set of axioms.)

Practically every known fact of number theory is a logical consequence of
these axioms. However this set of axioms is not sufficient as a set of axioms
for Th(N), i.e., there are some sentences A true inN which cannot be derived
logically from these axioms. In fact, there is no way to find a reasonable set
of axioms for Th(N) (contrast this with the previous examples ?? and ??).
This is a consequence of the celebrated Gödel First Incompleteness Theorem.

Example 2.6.10 Consider the language L = {∈}, where ∈ is a binary re-
lation symbol. This is called the language of set theory and its intended
meaning is to view ∈ as representing membership of sets and the variables
are ranging over all sets. One can formulate in this language a list of ax-
ioms called the Zermelo-Fraenkel Axioms with the Axiom of Choice (ZFC),
from which one can logically derive practically all of the present day ordinary
mathematics, which, as it is well understood today, can be founded on the
theory of sets. Here are a few of the ZFC axioms:

(1) ∀x∀y(x = y ⇔ ∀z(z ∈ x⇔ z ∈ y)) (Extensionality axiom)
(2) ∀x∀y∃z∀w(w ∈ z ⇔ w = x ∨ w = y) (Pairing axiom)
(3) ∀x∃y∀z(z ∈ y ⇔ ∀t(t ∈ z ⇒ t ∈ x)) (Powerset axiom)

...

2.7. A PROOF SYSTEM FOR FIRST-ORDER LOGIC 115

Thus the theory Con(ZFC) can be viewed as a global theory encompassing
most present day mathematics. (But not quite all – by the same Gödel
Incompleteness Theorem no reasonable axiomatic theory can be complete in
the sense that there will always be, for any fixed reasonable set of axioms S,
a sentence A such that S 6|= A and S 6|= ¬A, provided S is powerful enough
to include some very elementary number theory. Reasonable here means that
there is a algorithm to decide whether a sentence belongs to S or not.)

2.7 A Proof System for First-Order Logic

Just as we did for propositional logic in section ??, we will now discuss a proof
system for first-order logic, i.e. a way to write formal proofs of statements
from axioms and rules of inference. Our main goal, as before, is to prove the
Gödel Completeness Theorem:

S ` A iff S |=, A.

but we will not get to this until section ??.

2.7.A Formal Proofs

As in section ?? it will be convenient to consider as basic symbols in the
language of first-order logic the following

¬,⇒,), (, x1, x2, . . . ,=,∀

and view (A∧B) as an abbreviation of ¬(A⇒ ¬B), (A∨B) as an abbrevia-
tion of (¬A⇒ B), (A⇔ B) as an abbreviation of ¬((A⇒ B)⇒ ¬(B ⇒ A))
and

∃xA as an abbreviation of ¬∀x¬A.

Definition 2.7.1 If A is a formula, then we call any formula of the form

∀y1∀y2 . . . ∀ynA

a generalization of A.

Example 2.7.2 ∀x∀y(P (x) ⇒ ∃zQ(x, y, z)) is a generalization of (P (x) ⇒
∃zQ(x, y, z)).

116 CHAPTER 2. FIRST-ORDER LOGIC

We will now describe a Hilbert-type proof system for first-order logic (this
particular system is essentially coming from H. Enderton, A Mathematical
Introduction to Logic). At this point, we fix a first-order language L and
consider only formulas in L from now on.

A (logical) axiom is any formula which is a generalization of a formula of
the following form:

(a) (i) A⇒ (B ⇒ A)

(ii) ((A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))

(iii) ((¬B ⇒ ¬A)⇒ ((¬B ⇒ A)⇒ B))

(b) (∀x(A⇒ B)⇒ (∀xA⇒ ∀xB))

(c) (A⇒ ∀xA), provided x is not free in A

(d) ∀xA⇒ A[x/t], provided t is a term substitutable for x in A, where this
proviso will be explained shortly.

(e) (i) x = x

(ii) (x = y ∧ y = z)⇒ (x = z)

(iii) x = y ⇒ y = x

(iv) (y1 = z1 ∧ · · · ∧ yn = zn)⇒ (f(y1, . . . , yn) = f(z1, . . . , zn))

(v) (y1 = z1 ∧ · · · ∧ ym = zm)⇒ (R(y1, . . . , ym)⇔ R(z1, . . . , zm))

(Here A,B,C are arbitrary formulas, x, y, z, y1, . . . yn, z1, . . . zn arbitrary vari-
ables, f arbitrary n-ary function symbols and R arbitrary m-ary relation
symbols.)

We also have a rule of inference, namely modus ponens (MP).

From A, (A⇒ B) derive B.

Definition 2.7.3 If S is any set of formulas, a formal proof from S is a
sequence A1, . . . , An of formulas such that each Ai is either a logical axiom,
belongs to S or comes by applying modus ponens to some Aj, Ak with j, k < i.
We call this sequence a formal proof of An from S.

If there is a formal proof of a formula A from S, we say that A is a formal
theorem of S and write

S ` A.

2.7. A PROOF SYSTEM FOR FIRST-ORDER LOGIC 117

If S = ∅, we just write
` A

and call A a formal theorem. The same remarks as in section ?? apply here
too. If we want to indicate the language L we are using, we explicitly write
S `L A.

Before discussing examples of formal proofs, we have to explain the notion
of substitutability. Recall that if A is a formula, x a variable and t a term,
then A[x/t] is the result of substituting every free occurrence of x in A by t.
The question is: Is ∀xA⇒ A[x/t] logically valid?

Example 2.7.4 Consider

A : ∃y(x 6= y)

t : y.

Then A[x/y] is the formula ∃y(y 6= y), but

∀x∃y(x 6= y)⇒ ∃y(y 6= y)

is clearly not valid.

The problem was that x was in the scope of ∃y and we substituted x by
y, which completely changed the meaning of this formula.

Definition 2.7.5 We say that t is substitutable for x in A if no free occur-
rence of x in A is within the scope of a quantifier ∀z or ∃z, with z a variable
occurring in t.

Examples 2.7.6
(i) x is substitutable for itself.

(ii) If t is a closed term, i.e., a term with no variables, then t is substitutable
for any x.

(iii) If A has no quantifiers, any t is substitutable for x.

(iv) f(x) is not substitutable for z in ∀x(R(x, z)⇒ ∀yQ(y)).

(v) h(z) is substitutable for x in ∀yP (x, y).

So we restrict (d) only to the case t is substitutable for x in A. Then it
is not hard to see that every formula of the form (d) is valid. Notice that,
by example (i) above the formulas ∀xA⇒ A are in (d).

118 CHAPTER 2. FIRST-ORDER LOGIC

2.7.B Examples of Formal Proofs

Example 2.7.7 First notice that if ` A, then ` ∀xA for any variable x (so
` B, where B is any generalization of A). To see this, let A1, . . . , An = A
be a formal proof of A. We claim that ` ∀xAi, for i = 1, . . . , n, so ` ∀xAn,
i.e., ` ∀xA. We can prove this by induction on i = 1, . . . , n. If i = 1, then
A1 is a logical axiom and thus, by definition, so is ∀xA1, so ` ∀xA1. Assume
this has been proved for all j < i and consider Ai. If Ai is a logical axiom,
we are done as in the case i = 1. Otherwise Ai comes by MP from Aj, Ak
with j, k < i, i.e., Ak is of the form Aj ⇒ Ai. By induction hypothesis,
` ∀xAj, ` ∀x(Aj ⇒ Ai), so, since ` ∀x(Aj ⇒ Ai) ⇒ (∀xAj ⇒ ∀xAi) (by
(b)), using MP twice, we see that ` ∀xAi.

Example 2.7.8 If A is an instance of a tautology, then ` A, using the
completeness theorem for propositional logic. So, using also example ??, we
see that ` ∀y1 . . . ∀ynA, for any y1, . . . , yn and any instance of a tautology A,
i.e., any generalization of an instance of a tautology is a formal theorem, so
we can use it freely in a formal proof.

Example 2.7.9 ` ∀x(P (x)⇒ ∃yP (y)) or, recalling our abbreviations,

` ∀x(P (x)⇒ ¬∀y¬P (y)).

Here is why:

1. ` ∀x[(∀y¬P (y)⇒ ¬P (x))⇒ (P (x)⇒ ¬∀y¬P (y))]
(This is a generalization of the instance of the tautology

(A⇒ ¬B)⇒ (B ⇒ ¬A),

with A : ∀y¬P (y), B : P (x).) For simplicity, abbreviate

C : (∀y¬P (y)⇒ ¬P (x))

D : (P (x)⇒ ¬∀y¬(P (y)))

2. ` ∀x(C ⇒ D)⇒ (∀xC ⇒ ∀xD) (logical axiom (b))
3. ` ∀xC ⇒ ∀xD (MP 1, 2)
4. ` ∀x(∀y¬P (y)⇒ ¬P (x)) (logical axiom (d))

(noticing that x is substitutable for y in ¬P (y))
5. ` ∀xD (MP 3, 4)

(i.e., ` ∀x(P (x)⇒ ¬∀y¬P (y)))

2.7. A PROOF SYSTEM FOR FIRST-ORDER LOGIC 119

2.7.C Metatheorems

As in the case of propositional logic, we will prove a few metatheorems, which
again formally correspond to common proof techniques.

Proposition 2.7.10 (Tautology Theorem) If S ` A1, . . . , S ` An and
the set {A1, . . . , An} tautologically implies B, i.e., (A1 ⇒ (A2 ⇒ . . . ⇒
(An ⇒ B) . . .)) is an instance of a tautology, then S ` B.

Proof. We have ` (A1 ⇒ . . .⇒ (An ⇒ B) . . .)), so, since S ` A1, . . . , S `
An, by applying MP several times we get S ` B. a

Proposition 2.7.11 (Deduction Theorem)

S ∪ {A} ` B iff S ` (A⇒ B)

Proof. Exactly as in propositional logic. a

Proposition 2.7.12 (Proof by Contradiction) If S∪{A} is formally in-
consistent, then S ` ¬A.

Proof. Exactly as in propositional logic. a

Example 2.7.13 ` ∃x (x = x). We leave the verification as an exercise. It
may be easier by using also some of the metatheorems that follow.

Proposition 2.7.14 (Proof by Contrapositive) If S ∪ {A} ` ¬B, then
S ∪ {B} ` ¬A.

Proof. Exactly as in propositional logic. a

Proposition 2.7.15 (Generalization Theorem) If S ` A and x is not
free in any formula in S, then S ` ∀xA.

Proof. By induction on proofs of A from S.

Basis.

(i) A is a logical axiom. Then ∀xA is also a logical axiom, so clearly
S ` ∀xA.

120 CHAPTER 2. FIRST-ORDER LOGIC

(ii) A is in S. Then, by hypothesis, x is not free in A. So A ⇒ ∀xA is a
logical axiom. By MP then, S ` ∀xA.

Induction Step. Assume that S ` ∀xA, S ` ∀x(A⇒ B) in order to show
that S ` ∀xB. Since ∀x(A ⇒ B) ⇒ (∀xA ⇒ ∀xB) is a logical axiom, this
follows by MP applied twice. a

Remark. The assumption that x is not free in any formula in S is necessary,
as the following example shows:

P (x) ` P (x)

but

P (x) 6` ∀xP (x).

(Otherwise, by the easy half of Gödel’s Theorem—the soundedness property
S ` A implies S |= A,—we would have P (x) |= ∀xP (x), which is easily false.)

Example 2.7.16 ∀x∀yA ` ∀y∀xA.

Proof. By Generalization, it is enough to show

∀x∀yA ` ∀xA,

and by Generalization once again, it is enough to show

∀x∀yA ` A.

Now

` ∀x∀yA⇒ ∀yA

(logical axiom (d)) and

` ∀yA⇒ A

(logical axiom (d)), so by MP twice,

∀x∀y ` A.

Example 2.7.17 ` ∃x∀yA⇒ ∀y∃xA.

2.7. A PROOF SYSTEM FOR FIRST-ORDER LOGIC 121

Proof. By the Deduction Theorem, it is enough to show that

∃x∀yA ` ∀y∃xA

or, by Generalization,
∃x∀yA ` ∃xA

or, recalling our abbreviations,

¬∀x¬∀yA ` ¬∀x¬A

or, by Proof by Contrapositive and the Tautology Theorem,

∀x¬A ` ∀x¬∀yA.

Again by Generalization enough to prove

∀x¬A ` ¬∀yA

or by Proof by Contradiction enough to prove that

S = {∀x¬A, ∀yA}

is formally inconsistent.
But ∀x¬A⇒ ¬A, ∀yA⇒ A are both logical axioms (d), so by MP

S ` A, S ` ¬A

and we are done.

Example 2.7.18 ` (A⇒ ∀xB)⇔ ∀x(A⇒ B), provided x is not free in A.

Proof. It is enough to show (by the Tautology Theorem):

` (A⇒ ∀xB)⇒ ∀x(A⇒ B) (∗)
` ∀x(A⇒ B)⇒ (A⇒ ∀xB) (∗∗)

(??): By the Deduction Theorem enough to show that

A⇒ ∀xB ` ∀x(A⇒ B),

so by Generalization enough to show that

A⇒ ∀xB ` A⇒ B,

122 CHAPTER 2. FIRST-ORDER LOGIC

or by the Deduction Theorem

A,A⇒ ∀xB ` B

which is clear by MP and the fact that ∀xB ⇒ B is a logical axiom (d).
(??): By the Deduction Theorem, it is enough to show that

∀x(A⇒ B), A ` ∀xB

But ∀x(A⇒ B)⇒ (∀xA⇒ ∀xB) is a logical axiom (d) and so is A⇒ ∀xA,
so this is clear by MP.

Proposition 2.7.19 (Generalization on Constants) Let L be a first-
order language, S a set of formulas in L, A(x) a formula in L and c a
constant symbol not in L. Then if S `L∪{c} A[x/c], we have S `L ∀xA.

Proof. Since S ` A[x/c], let S0 ⊆ S be a finite subset of S such that
S0 ` A[x/c]. Say

A1, A2, . . . , Ak = A[x/c]

be a proof of A[x/c] from S0 (in L∪{c}). Let A′1, . . . , A
′
k result by substituting

c by y in A1, . . . , Ak, where y is a variable not occurring in S0, A1, . . . , Ak, A.
Then it can be easily checked by induction that A′1, . . . , A

′
k = A[x/y] is a

proof from S0 (in L). So
S0 ` A[x/y]

Since y does not occur in S0, we have by Generalization that

S0 ` ∀yA[x/y].

But clearly x is substitutable for y in A[x/y] and

A[x/y][y/x] = A,

so
∀yA[x/y]⇒ A

is a logical axiom, thus
∀yA[x/y] ` A

(by MP), so by Generalization again

∀yA[x/y] ` ∀xA,

2.8. THE GÖDEL COMPLETENESS THEOREM 123

and by MP
S0 ` ∀xA,

so
S ` ∀xA.

a

Example 2.7.20 ∀x∀yR(x, y) ` ∀y∀xR(x, y) (a different argument).

Proof. Enough to show

∀x∀yR(x, y) ` ∀xR(x, d),

where d is a constant symbol, or again

∀x∀yR(x, y) ` R(c, d),

where c is a constant symbol different from d.
But ∀x∀yR(x, y) ⇒ ∀yR(c, y) is a logical axiom (d) and ∀yR(c, y) ⇒

R(c, d) is a logical axiom (d), so by MP twice, ∀x∀yR(x, y) ` R(c, d).

2.8 The Gödel Completeness Theorem

Kurt Gödel was an Austrian logician, widely considered one of the most
important and influential logicians of all time. He was born in 1906 in Brno,
then part of the Austro-Hungarian empire, and now a Czech city. Gödel died
in Princeton in 1978.

Gödel’s work in mathematical logic produced three celebrated results:
First, the completeness theorem, whose proof we present in this section:
First-order logic is complete in the sense that a theory proves a formula
if and only if all models of the theory are also models of the formula. Sec-
ond, the incompleteness theorems, published in 1931, one year after finishing
his doctorate at the University of Vienna. The incompleteness results state
that if a theory is “understandable enough” (meaning that its axioms can
be generated algorithmically) and powerful enough to prove a small frag-
ment of Peano arithmetic, then either it is inconsistent or else there are true
(arithmetic) sentences that it cannot prove. In fact, if it proves enough of
Peano arithmetic, then statements about certain formulas being provable

124 CHAPTER 2. FIRST-ORDER LOGIC

from the theory can be represented by statement about numbers, and using
this representation one can write a sentence Con that states that the theory
is consistent. Then, either the theory is inconsistent, or else Con itself is not
provable in the theory. This result destroyed a program initiated by Hilbert
trying to show, by self-contained mathematical methods, the consistency of
mathematics. Gödel’s third main result is in set theory, where he introduced
the universe L of constructible sets and proved that L is a model of set theory,
together with the axiom of choice and the generalized continuum hypothesis.

Gödel also made contributions to intuitionistic logic and relativity theory.
In 1933, he met Einstein while travelling in the US. The two of them became
good friends and after his move to Princeton, Einstein was one of the very
few people with whom Gödel kept personal contact.

He moved to the States in 1940 because his former association with Jewish
members of the so called Vienna circle (an influential group of mathemati-
cians and philosophers of which Alfred Tarski, the logician who introduced
the notion of truth (|=), was also a member) made it difficult for him to keep
his position in Vienna under the Nazi regime.

Gödel suffered from delusions that eventually developed into an acute
case of paranoia. He believed conspirators tried to assassinate him with
poison gas and eventually thought that they were trying to poison his food.
In 1977, due to illness, his wife could no longer help him with his meals, and
he refused to eat any food at all, starving himself to death.

Theorem 2.8.1 (Gödel) Let L be a first-order language and S a set of
formulas in L, A a formula in L. Then

S |= A iff S ` A.

Proof. The direction

S ` A implies S |= A

is easy and is called the Soundedness Property of the proof system. It follows
immediately from the fact that every logical axiom is logically valid and that
MP preserves validity.

We will now prove the Completeness Property of the proof system, i.e.,

S |= A implies S ` A.

2.8. THE GÖDEL COMPLETENESS THEOREM 125

As is the case of propositional logic (section ??), it is enough to show the
following:

If a set of formulas S is formally consistent, then it is satisfiable. (∗)

(As before, we call S formally inconsistent if for some formula A we have
S ` A and S ` ¬A, and otherwise we call S formally consistent.)

For simplicity, we will give in detail the proof of (??) in case S is a set of
sentences. (The case of arbitrary formulas follows from this by a little extra
argument.) So we have a formally consistent set of sentences S and we have
to find a model of S. First, we need some terminology:

Definition 2.8.2 A formal theory is a set of sentences T closed under formal
provability, i.e. T ` A (A a sentence) implies A ∈ T .

Definition 2.8.3 A set of sentences T is complete if for any sentence A we
have either A ∈ T or ¬A ∈ T .

It is then clear that if T is formally consistent and complete, then for any
sentence A, exactly one of A and ¬A belongs to T .

Definition 2.8.4 A Henkin theory is a formal theory which has the following
extra property:

“For any formula A(x) there is a constant symbol c = cA such that
¬∀xA(x)⇒ ¬A[x/c] is in T .”

We call cA a Henkin witness for ¬∀xA(x).

We prove two lemmas from which (??) follows immediately.

Lemma 2.8.5 Suppose L′ is a first-order language, T ′ a formally consistent,
complete Henkin theory in L′. Then T ′ has a model M.

Lemma 2.8.6 Let L be a first-order language and S a formally consistent
set of sentences in L. Then there is a first-order language L′ ⊇ L obtained
by adding some constant symbols to L, and a formally consistent, complete,
Henkin theory T ′ in L′ such that T ′ ⊇ S.

126 CHAPTER 2. FIRST-ORDER LOGIC

Proof of of Lemma ??. Let

A = {t : t is a closed term in L′}.

Define an equivalence relation ∼ on A as follows:

s ∼ t iff s = t ∈ T ′

(s = t is a sentence in L). We have first to check that this is indeed an
equivalence relation:

(i) s ∼ s.

This means that s = s ∈ T ′. But ∀x(x = x) ⇒ s = s is a logical
axiom (d) and ∀x(x = x) is a logical axiom (e), so, by MP, ` s = s, so
T ′ ` s = s, thus s = s ∈ T ′.

(ii) s ∼ t implies t ∼ s.

We have that s = t ∈ T ′. Now ∀x∀y(x = y ⇒ y = x) is a logical
axiom (e) and ` ∀x∀y(x = y ⇒ y = x) ⇒ (s = t ⇒ t = s), so by MP,
` (s = t)⇒ (t = s) so as s = t ∈ T ′, T ′ ` t = s, thus t = s ∈ T ′ (since
T ′ is a formal theory), i.e., t ∼ s.

(iii) s ∼ t and t ∼ u imply s ∼ u.

Again ∀x∀y∀z((x = y ∧ y = z) ⇒ x = z) is a logical axiom (e) and
` ∀x∀y∀x((x = y ∧ y = z) ⇒ x = z) ⇒ ((s = t ∧ t = u) ⇒ s = u) by
using three times logical axiom (d) and MP, so , by MP, ` (s = t∧ t =
u)⇒ s = u, so T ` (s = t∧ t = u)⇒ s = u and since s = t, t = u ∈ T ′
it follows that T ′ ` s = u, so s = u ∈ T ′.

Denote by
[s] = {t : t ∼ s}

the equivalence class of s ∈ A, and by

M = {[s] : s a closed term}

the set of all equivalence classes (the quotient set of A modulo ∼). This
will be the underlying universe of the model of T ′. We will now define the
interpretations of the relation and function symbols of L′:

2.8. THE GÖDEL COMPLETENESS THEOREM 127

Let f be an n-ary function symbol. Define its interpretation fM by

fM([s1], . . . , [sn]) = [f(s1, . . . , sn)].

One has to show that this is well-defined, i.e., if s1 ∼ t1, . . . , sn ∼ tn, then

f(s1, . . . , sn) ∼ f(t1, . . . , tn).

This follows easily from the fact that

` (s1 = t1 ∧ · · · ∧ sn = tn)⇒ f(s1, . . . , sn) = f(t1, . . . , tn),

which can be proved by arguments similar to those before (using logical
axioms (e)).

As a special case, if c is a constant symbol we have

cM = [c].

For further reference, note also that for any closed term s we have

sM = [s].

(This can be easily proved by induction on the construction of s.)
Now let R be an m-ary relation symbol. Define its interpretation RM by

RM([s1], . . . , [sm]) iff R(s1, . . . , sm) ∈ T ′.

Again we have to show that this is well-defined, i.e. that s1 ∼ t1, . . . , sm ∼ tm
imply that

R(s1, . . . , sm) ∈ T ′ iff R(t1, . . . , tm) ∈ T ′.

This follows from the fact that

` (s1 = tm ∧ · · · ∧ sm = tm)⇒ [R(s1, . . . , sm)⇔ R(t1, . . . , tm)].

We have now completed the description of the structure M. It remains
to show that

M |= T ′.

Actually we will show that for each sentence A of L′ we have

M |= A iff A ∈ T ′. (∗∗)

128 CHAPTER 2. FIRST-ORDER LOGIC

For each sentence A, let

N(A) = the total number of ¬,⇒,∀ in A.

We will prove (??) by induction on N(A).

Basis. N(A) = 0. Then A is atomic, i.e., s = t or R(s1, . . . , sm) for closed
terms s, t, s1, . . . , sm. For the case of s = t we have

M |= s = t iff sM = tM iff [s] = [t]

iff s ∼ t iff s = t ∈ T ′.

For the case of R(s1, . . . , sm) we have

M |= R(s1, . . . , sm) iff RM(sM1 , . . . , sMm)

iff RM([s1], . . . , [sm])

iff R(s1, . . . , sm) ∈ T ′.

Induction step. Assume (??) has been proved for all sentences A′ with
N(A′) ≤ n. Say A is such that N(A) = n+ 1.

Case 1. A is of the form ¬B. Then N(B) = n, so by induction hypothesis

M |= B iff B ∈ T ′,

thus

M |= A iff M 6|= B iff B 6∈ T ′

iff ¬B ∈ T ′ (as T ′ is formally consistent and complete)

iff A ∈ T ′.

Case 2. A is of the form B ⇒ C. Then N(B), N(C) ≤ n, so by induction
hypothesis

M |= B iff B ∈ T ′

M |= C iff C ∈ T ′.
Thus we have

M |= A iff M 6|= B or M |= C

iff B 6∈ T ′ or C ∈ T ′

iff ¬B ∈ T ′ or C ∈ T ′

iff B ⇒ C ∈ T ′ (+)

iff A ∈ T ′

2.8. THE GÖDEL COMPLETENESS THEOREM 129

To see (??), notice that if ¬B ∈ T ′, then since ¬B ⇒ (B ⇒ C) is an
instance of a tautology, so ` ¬B ⇒ (B ⇒ C), we have T ′ ` B ⇒ C, so
B ⇒ C ∈ T ′. Similarly if C ∈ T ′, since C ⇒ (B ⇒ C) is a logical axiom
(a). Conversely, if B ⇒ C ∈ T ′ but ¬B 6∈ T ′ and C 6∈ T ′, then B ∈ T ′

and ¬C ∈ T ′, so by MP C ∈ T ′ and ¬C ∈ T ′, which is impossible, as T ′ is
formally consistent.

Case 3. A is of the form ∀xB(x). Then N(B) = n, so also N(B[x/t]) = n
for any closed term t, thus by induction hypothesis:

M |= B[x/t] iff B[x/t] ∈ T ′.

We will show that
M |= ∀xB(x) iff ∀xB(x) ∈ T ′.

If M |= ∀xB(x), then for any closed term t, we have

M |= B[x/t]

(notice that ∀xB(x)⇒ B[x/t] is logically valid). SoB[x/t] ∈ T ′, for all closed
terms t. If now ∀xB(x) 6∈ T , towards a contradiction, then ¬∀xB(x) ∈ T ′, so,
as T ′ is a Henkin theory, for some constant symbol c we have ¬B[x/c] ∈ T ′,
a contradiction.

Conversely, assume ∀xB(x) ∈ T ′. Then as ∀xB(x) ⇒ B[x/t] is a logical
axiom (d) for every closed term t, we have B[x/t] ∈ T ′, so by induction
hypothesis M |= B[x/t], i.e., M |= B[x 7→ tM] or M |= B[x 7→ [t]]. But
every element of M has the form [t] for some such t, so M |= B[x 7→ a] for
every a ∈M , i.e., M |= ∀xB(x). Lemma ??a
Proof of Lemma ??. Again for simplicity in exposition, we will assume
that L is countable, i.e. all non-logical symbols in L can be enumerated in a
sequence. It follows that one can enumerate in a sequence all formulas of L
and so all sentences of L.

The proof of Lemma ?? will be done in two steps.

1st Step. We will first define a first-order language L′ ⊇ L obtained by
adding to L a countable set of constant symbols, and a formally consistent
Henkin theory S ′ in L′ such that S ′ ⊇ S. Notice that L′ is still countable.

2nd Step. We will find a formally consistent and complete theory T ′ ⊇ S ′ in
the language L′. Then notice that T ′ is also a Henkin theory (by definition),
so we are done.

130 CHAPTER 2. FIRST-ORDER LOGIC

The second step can be done exactly as in the case of propositional logic
(see the proof of sublemma ??), so we won’t repeat it.

Thus it is enough to do the 1st step: Define recursively on n, a first order
language Ln and a set of sentences Sn of Ln such that

L = L0 ⊆ L1 ⊆ L2 ⊆ . . .

S = S0 ⊆ S1 ⊆ S2 ⊆ . . .

as follows:
L0 = L, S0 = S

Assume Ln, Sn are given. Define then Ln+1 by adding to Ln one new constant
symbol (not in Ln and distinct from each other)

c = c¬∀xA(x)

for each sentence of Ln of the form ¬∀xA(x). Finally obtain Sn+1 by adding
to Sn all the sentences

¬∀xA(x)⇒ ¬A[x/c],

where A(x) is a formula of Ln and c is the constant symbol associated to
¬∀xA(x).

Put now
L′ =

⋃
n

Ln, S
′′ =

⋃
n

Sn.

Clearly L′ ⊇ L is obtained from L by adding to L countably many constant
symbols. Let S ′ be the formal theory generated by S ′′, i.e.,

S ′ = {A a sentence of L′ : S ′′ ` A}.

Clearly S ⊆ S ′′ ⊆ S ′, so it is enough to show that S ′ is a formally consistent
Henkin theory.

That it is a Henkin theory is easy: If A(x) is a formula of L′, then A(x)
is a formula of some Ln, so if c = c¬∀xA(x), then c is a constant symbol in
Ln+1, thus in L′, and

¬∀xA(x)⇒ ¬A[x/c]

is in Sn+1, thus in S ′.
It remains to show that S ′ is formally consistent or equivalently that S ′′

is formally consistent, and for that it is enough to show each Sn is formally

2.9. THE COMPACTNESS THEOREM 131

consistent. This is done by induction on n. For n = 0, it is given as S0 = S.
So assume now that Sn is formally consistent. If Sn+1 is formally inconsistent,
towards a contradiction, there are formulas A1(y1), . . . , Ak(yk) of Ln and new
(i.e., not in Ln) distinct constants of Ln+1, say c1, . . . , ck, such that

Sn ∪ {¬∀yiAi(yi)⇒ ¬Ai(ci) : 1 ≤ i ≤ k}

is formally inconsistent, where Ai(ci) abbreviates Ai[yi/ci]. Then by proof
by contradiction

Sn ∪ {¬∀yiAi(yi)⇒ ¬Ai(ci) : 1 ≤ i ≤ k − 1}︸ ︷︷ ︸
Q

` ¬(¬∀ykAk(yk)⇒ ¬Ak(ck)),

so, by using tautologies,
Q ` ¬∀ykAk(yk)

Q ` Ak(ck).

But by Generalization on Constants, since ck does not occur in the formulas
in Q, we have that

Q ` ∀ykAk(yk),

so Q is formally inconsistent. Proceeding successively in a similar fashion
we eliminate one-by-one all ¬∀yiAi(yi)⇒ ¬Ai(ci) for i = k, . . . , 1, so we get
that Sn is formally inconsistent, a contradiction. Lemma ??a

2.9 The Compactness Theorem

As an immediate corollary of the Gödel Completeness Theorem for First-
Order Logic, we obtain the compactness theorem for first-order logic:

Theorem 2.9.1 (The Compactness Theorem, I) Let L be a first-order
language, S a set of sentences in L and A a sentence in L. Then if S |= A,
there is a finite subset S0 ⊆ S such that S0 |= A.

Theorem 2.9.2 (The Compactness Theorem, II) Let L be a first-order
language and S a set of sentences of L. If every finite subset S0 ⊆ S has a
model, S has a model.

We will discuss some applications of this Compactness Theorem.

132 CHAPTER 2. FIRST-ORDER LOGIC

2.9.A Finiteness and Infinity

Theorem 2.9.3 Let S be a set of sentences in L. If S has arbitrarily large
finite models, then S has an infinite model.

Proof. Let λn be the sentence

λn : ∃x1∃x2 . . . ∃xn(
∧
i<j

xi 6= xj).

Then for any structure M = 〈M,−〉,

M |= λn iff card(M) ≥ n.

Let T = S ∪ {λ1, λ2, . . . }. Our hypothesis implies that every finite subset of
T has a model. So by the Compactness Theorem, T has a model M. Then
M |= S and M |= λn for each n, so M is infinite (i.e., M is infinite). a

Corollary 2.9.4 “Finiteness” cannot be expressed in first-order logic, i.e.,
for any first-order language L there is no set of sentences S in L such that
for any structure M of L

M |= S iff M is finite.

If Λ∞ = {λ1, λ2, . . . }, then clearly

M |= Λ∞ iff M is infinite,

so “infinity” can be characterized by an (infinite) set of sentences in first-
order logic, namely Λ∞. Can it be characterized by a finite set of sentences,
or equivalently by a single sentence A? If it could, then we would have

M |= A iff M is infinite,

so
M |= ¬A iff M is finite,

contradicting the previous corollary. It follows that if

T = Con(Λ∞),

then T is not finitely axiomatizable.

2.9. THE COMPACTNESS THEOREM 133

Consider the language L = {<}. Can we find a set of sentences S in L
such that

M = 〈M,<M〉 |= S iff M is a well ordering?

We can see that the answer is negative as follows: Assume such an S ex-
isted, towards a contradiction. Consider the language L′ = {<, c0, c1, c2, . . . }
obtained by adding to L an infinite list of constant symbols c0, c1, . . . Let

T = S ∪ {c1 < c0, c2 < c1, c3 < c2, . . . }.

Then we claim that any finite subset T0 of T has a model. This is because T0

is contained in S ∪ {c1 < c0, c2 < c1, . . . , cn0+1 < cn0} for some large enough
n0. A model of T0 is then

M0 = 〈N, <, cM0
0 , cM0

1 , . . . 〉,

where cMi = n0 + 1 − i, if i ≤ n0 + 1 and cMi = 0 if i > n0 + 1. So, by the
Compactness Theorem, T has a model

M = 〈M,<M, cM0 , cM1 , . . . 〉.

Then let
A = {cM0 , cM1 , . . . } ⊆M.

Since cM0 >M cM1 >M cM2 >M . . . , clearly A has no least element (in <M),
so it is not a wellordering, contradicting that

〈M,<M〉 |= S.

2.9.B Non-standard Models of Arithmetic

There are two main types of theories we have discussed. Many, such as the
theories of groups, partial orders, ordered fields, and so on, are intended to
have many models. The models of the theory of groups are all the objects
which we call groups, and so on. From the standpoint of the first-order
theory, all we can say about an arbitrary group is that it satisfies certain
axioms and everything that follows from them. Of course, there are many
statements independent of the axioms, and these may be true or false of
individual groups. This is what makes group theory interesting.

The other type of theories are those intended (at least originally) to rep-
resent a single model. For example, the theory of arithmetic is constructed

134 CHAPTER 2. FIRST-ORDER LOGIC

with the structure of the natural numbers N in mind. A very natural ques-
tion to ask is, “Do these theories also have multiple models?” For example,
are there other structures which “act like N ” as far as the first-order theory
can tell, but are not in fact the same? The answer is yes, and the conse-
quences are interesting and far-reaching. We start by defining what we are
looking for:

Definition 2.9.5 A model of (complete) arithmetic is a structure of Lar,

M = 〈M, 0M, SM,+M, ·M, <M〉

which is a model of Th(N), i.e. for any sentence A in the language of arith-
metic

M |= A iff N |= A.

What does a general model of arithmetic look like? Well, to start with,
it must contain objects nM which “look like” the natural numbers n ∈ N.
For any such n ∈ N, let

nM = nM,

where n is the term in Lar given by:

n = S(S(S . . . S︸ ︷︷ ︸
n times

(0) . . .))

(so that nN = n). Let
NM = {0M, 1M, . . . }.

Then it is not hard to see that NM is closed under SM,+M, ·M, so it defines
a structure

NM = 〈NM, 0M, SM|NM,+M|NM, ·M|NM, <M |NM〉,

and the map n 7→ nM is an isomorphism of N with NM. So we can simply
identify N with NM. We call the elements n = nM the standard elements
of M. So we see that any model of arithmetic must contain, at least, an
embedded “standard copy” of N .

Now what ifM has non-standard elements? What would they look like?
They have to be “infinite”: that is, we must have

n <M a

2.9. THE COMPACTNESS THEOREM 135

for all standard n. This is because

N |= ∀x(x < n⇒ x = 0 ∨ x = 1 ∨ · · · ∨ x = n− 1),

soM |= ∀x(x < n⇒ x = 0∨ · · · ∨ x = n− 1). So if a ∈M is different than
each n, then, since <M is a linear order, if n <M a fails, then we must have
a <M n (since a 6= nM), so a = 0, or a = 1, . . . , or a = n−1, a contradiction.
So we have the picture

0 1 2 a︸ ︷︷ ︸
standard

︸ ︷︷ ︸
non-standard

Do non-standard models of arithmetic exist? That is, models of arith-
metic with non-standard elements (equivalently not isomorphic to N)? The
answer is yes, as we can see using the Compactness Theorem.

Consider the language

L′ = {0, S,+, ·, <} ∪ {c},

where c is a new constant symbol. Let S be the following set of sentences in
L′:

S = Th(N) ∪ {n < c : n ∈ N}.

Then every finite subset S0 of S has a model. This is because S0 ⊆ Th(N)∪
{n < c : n ≤ n0} for some large enough n0. Then a model of S0 is

N0 = 〈N, 0, S,+, ·, <, cN0〉

where cN0 = n0 + 1. So, by the Compactness Theorem, S has a model

M = 〈M, 0M, SM,+M, ·M, <M, cM〉.

Then if a = cM we have
nM = n <M a

for all n ∈ N, i.e. a is non-standard.
Non-standard models such as this one can often be used in many areas

of mathematics to simplify proofs and elucidate concepts more clearly. For
example there are non-standard models of R that contain “infinitesimals”—
non-standard elements which are positive yet smaller (under <M) than any

136 CHAPTER 2. FIRST-ORDER LOGIC

(embedded standard copy of a) positive real number—and they can be used
to reformulate calculus without using limits. This field of study is called
infinitesimal analysis or non-standard analysis.

Here are some basic examples. Let A ⊆ R and let f : A → R. Consider
the structure

R = (R,N, 0, 1, <,+,−,×, /, f)

where N, / and f are seen as relations: N is seen as a unary relation, so n ∈ N
iff N(n), / is seen as a ternary relation, so a/b = c for b 6= 0 iff /(a, b, c) and
f is seen as a binary relation, so f(a) = b iff f(a, b), this is simply so we can
talk about f even if its domain is not all of R, and similarly for /.

A nonstandard model of analysis is a structure

∗R = (∗R, ∗N, ∗0, ∗1, ∗<, ∗+, ∗−, ∗×, ∗/, ∗f)

together with a proper elementary embedding j : R → ∗R. This means
that j is an elementary embedding and that the image of j is not all of ∗R.
That j is elementary means that for any formula A(x1, . . . , xn) and any reals
r1, . . . , rn,

R |= A[x1/r1, . . . , xn/rn]

if and only if
∗R |= A[x1/j(r1), . . . , xn/j(rn)].

In particular, j is 1-to-1 and R and ∗R satisfy the same sentences.

Notice that j(0) = ∗0 and j(1) = ∗1; in general, we will write j(r) = ∗r.
Notice that ∗(−r) = ∗ − ∗r for r ∈ R and ∗(f(r)) = ∗f(∗r) for r ∈ A.

Let ∗R be a nonstandard model. As before, that ∗R exists is an easy
consequence of the compactness theorem. Say that r ∈ ∗R is finite iff there
is n ∈ N such that ∗ − n ∗< r ∗< ∗n. Say that r is infinite otherwise. Say
that r is infinitesimal iff for all n ∈ N such that n > 0, ∗−1/n ∗< r ∗ < ∗1/n.
Write r ≈ s iff r − s is infinitesimal. If r ∈ ∗R, s ∈ R and r ≈ ∗s, say that s
is the standard part of r and write ◦r = s.

The following claims are left as exercises:

(i) If r ∈ ∗R is finite then its standard part exists, i.e., there is a unique
real number s such that r ≈ s.

(Recall that a set of reals bounded above has a least upper bound.)

2.9. THE COMPACTNESS THEOREM 137

(ii) There are infinite elements in ∗R. There are infinitesimals (other than
∗0). There are infinite natural numbers, i.e., infinite numbers N such
that ∗N(N).

(iii) The function f is continuous iff for all x ≈ y, x, y ∈ dom(∗f), ∗f(x) ≈
∗f(y). Suppose that dom(f) = [0, 1] and that f is continuous. It
follows that if ∗0 ∗< r ∗< ∗1 then ∗f(r) is finite.

(iv) Let N be an infinite natural number. Then

{ i/N : ∗N(i) and i ∗≤ N }

is dense in j([0, 1]) = { ∗s : s ∈ [0, 1] } and for any s ∈ [0, 1] there is an
i/N such that ◦(i/N) = s. Here, ∗≤ means ∗< or =, and / is really ∗/,
but we suppress the ∗ to improve readability.

(v) Suppose from now on that A = [0, 1], that f is continuous, and that
N is an infinite natural number. The variable i will always stand for
a number in ∗N such that i ∗ ≤ N . For any such i, ◦(∗f(i/N)) =
f(◦(i/N)).

(vi) There is an i0 such that ∗f(i0/N) is maximum among

{ ∗f(i/N) : ∗N(i) and i∗≤ N }.

It follows that ◦(∗f(i0/N)) is the maximum of f on [0, 1]. This shows
that a continuous function on a closed interval attains its maximum
(and, in particular, is bounded).

(vii) Suppose that f(0) < 0 and f(1) > 0. Then there is an i such that
∗f(i/N)∗ ≤ ∗0 ∗ ≤ ∗f((i∗+ ∗1)/N). It follows that ◦(i/N) = ◦((i∗+
∗1)/N) and therefore f(◦(i/N)) = 0. This shows the intermediate
value theorem.

138 CHAPTER 2. FIRST-ORDER LOGIC

Chapter 3

Computability and Complexity

3.1 Introduction

Consider a domain D of concrete objects, e.g., numbers, words in an alpha-
bet, finite graphs, etc. We will refer to elements I of D as instances.

Definition 3.1.1 Given a set P ⊆ D of instances, the decision problem for
P is the following question:

Is there an algorithm (effective or mechanical procedure) which
will tell us, in finitely many steps, for each instance I ∈ D whether
I ∈ P or I 6∈ P?

Example 3.1.2 Given a formula in propositional logic, is there an algorithm
to determine whether it is satisfiable? One can also consider the decision
problem where the formulas are now in first-order logic.

Example 3.1.3 Is there an algorithm that, given n ∈ N and

m ∈ {0, 1, . . . , 9},

tells us whether the n-th digit in the decimal expansion of π is m?

Example 3.1.4 (The Hilbert 10th Problem) Is there an algorithm to
verify whether an arbitrary polynomial (in several variables)∑

ai1i2i3...inx
i1
1 x

i2
2 . . . x

in
n

with integer coefficients ai1i2...in has an integer solution?

139

140 CHAPTER 3. COMPUTABILITY AND COMPLEXITY

Definition 3.1.5 If such an algorithm exists for the decision problem (given
by) P , we will call P decidable. Otherwise we call it undecidable.

Example 3.1.6 The validity problem for formulas in propositional logic
is decidable (use truth tables). The Hilbert 10th Problem is undecidable
(Matyasevich, 1970).

Thus, modulo our rather vague definition of “algorithm,” we have the
first main classification of (decision) problems as decidable or undecidable.
Our next goal will be to classify further the decidable problems according to
the (time) complexity of their algorithms and distinguish between those for
which an efficient (feasible) algorithm is possible, the tractable problems, and
those for which it is not, the intractable problems.

............................

.............................

.............................

.............................

............................

...........................

...........................

............................

.............................
.............................

...
......................

.......

.................
...........

..............
.............

............
............
...

............
............
....

...........
...........
.......

...........
...........
.......

..........
..........
........

..........

..........

........

..........

..........

........

..........
..........
........

...........
...........
.......

...........
...........
.......

............
............
....

............
............

...

..............
.............

.................
...........

......................
.......

.............................
.............................

.............................

............................

...........................

...........................

............................

.............................

.............................

............................

............................

..................

...................

..................

..................

..................
..................

..
...............
...

.............
.....

...........
.......

...........
........

..........

........

..........

........

...........
........

...........
.......

.............
.....

...............
...

..................
..................
..................

..................

..................

...................

..................

Decidable
Problems

Tractable
Problems

Undecidable
Problems

In particular, this will lead to the study of an important class of problems
widely believed to be intractable, but for which no proof has yet been found
(this is the famous P = NP problem).

We will now formalize these concepts and present an introduction to the
study of decision problems and their complexity.

3.2 Decision Problems

We can represent concrete finite objects as words (strings) in a finite alpha-
bet.

Definition 3.2.1 An alphabet is an arbitrary nonempty set, whose elements
we call symbols.

3.2. DECISION PROBLEMS 141

We will be mainly dealing with finite alphabets A = {σ1, . . . , σk}.

Definition 3.2.2 A word (or string) for A is a finite sequence a1a2 . . . an,
where each ai is a symbol in A. If w = a1a2 . . . an is a word, then n = |w| is
the length of w.

We denote by An the set of all words of length n from A. By convention
we also have the empty word θ which has length 0. Thus A0 = {θ}. Finally
we let

A∗ =
⋃
n

An

be the set of all words from A (including θ).

Examples 3.2.3
(i) Natural numbers can be represented as words using decimal notation

and the alphabet {0, 1, 2, . . . , 9}, or in the alphabet {0, 1} using binary
notation, or even in the alphabet {1} using unary (“tally”) notation.

(ii) A finite graph G = 〈V,E〉, with set of vertices V = {v1, . . . , vn}, can
be represented by its adjacency matrix A = (aij), 1 ≤ i, j ≤ n, where
aij ∈ {0, 1} and aij = 1 iff (ai, aj) ∈ E. This can be in turn represented
by the word

a11a12 . . . a1na21 . . . a2n . . . an1 . . . ann

in the alphabet {0, 1}.

Definition 3.2.4 A decision problem consists of a finite alphabet A and a
set of words P ⊆ A∗.

Consider a finite first order language L = {f1, . . . , fn; R1, . . . , Rm}. Rep-
resenting the variable xn by the string xn, where n is written in binary, we can
view every wff in L as a word in the finite alphabet A = L∪{x, 0, 1,¬,∧,∨,⇒
,⇔,∃,∀, (,),=}. We let VALIDITYL be the decision problem corresponding
to (A,P), where

P = {S : S is a sentence in L and |= S}.

142 CHAPTER 3. COMPUTABILITY AND COMPLEXITY

3.3 Turing Machines

Now that we have precisely defined decision problems, we will go on to make
precise our previously vague concept of an “algorithm.” We will do this by
presenting a model of computation, using a formalized representation of a
computer known as a Turing machine. There are many equivalent formaliza-
tions of the notion of “computability,” but Turing machines were one of the
earliest to be formulated and remain one of the easiest to understand and
work with.

As a motivation for the definition which is to follow, consider a running
computer program. At any given time, it is in some internal state (for ex-
ample, which line of the program is being executed) and has some amount
of stored data (in variables in memory and on disk). With each “tick” of the
computer’s clock, it moves to a new state based on its previous state and
the contents of its stored data (for example, performing a conditional jump),
and may modify the stored data as well.

With this characterization in mind, we make the following definition.

Definition 3.3.1 A Turing machine M on an alphabet A = {σ1, σ2, . . . , σk}
consists of the following:

(i) A finite set of states {Q0, Q1, . . . , Qm}. We call Q0 the start state and
Qm the stop state.

(ii) A table of (m+ 1) · (k + 1) 5-tuples of the form (Qi, a, b, s, Qj), where
a, b ∈ A ∪ {∗}. (Here ∗ is an additional symbol. whose meaning we
explain later. ∗ is sometimes also denoted, for consistency, by σ0 = ∗,
so that A ∪ {∗} = {σ0, σ1, . . . , σk}.) For each 0 ≤ i ≤ m, a ∈ A ∪ {∗},
there must be exactly one entry in this table of the form (Qi, a, b, s, Qj).
Finally we must have s ∈ {−1, 0,+1}.

The meaning of the set of states is clear from our discussion above, but
the rest of the definition may be somewhat more obscure. Here is how to
imagine the operation of a Turing machine. We have a two-way unlimited
“tape” divided into squares, each of which may contain at most one symbol
in A (or possibly be empty), and a read-write head that at any instant is
positioned at exactly one square on the tape.

3.3. TURING MACHINES 143

?
σ3 σ1 σ5

-2 -1 0 1 2 3 4

The head can move in one step along the tape at most one square at a
time, right or left, it can write a symbol in the scanned square (replacing
any symbol that may have been there) or erase the symbol in the scanned
square.

Using this image, for any input w ∈ A∗, we can describe the computation
of a Turing machine (TM) on this input w as follows: Let w = σi0σi1 . . . σin .
Put this input on the tape as in the picture below and put the scanning head
at the leftmost symbol in w (anywhere, if w = θ) and assign to it state Q0

(the start state):

?
Q0

σi0 σi1 σin· · · · · ·

0 1 2 n

We now follow the table of the TM by interpreting the entry

(Qi, a, b, s, Qj)

as expressing the instruction:
When the head is at state Qi and scans the symbol a (if a = ∗ this means

that it scans an empty square – thus ∗ is simply a symbol for the empty
square), then prints the symbol b (b = ∗ means “erase what is present at the
scanned square”). Then if s = +1, move the head one square to the right; if
s = −1, move one square to the left; and if s = 0, leave the head where it is.
Finally, change state to Qj.

So in terms of our original characterization of a computer program, the
symbol a represents the possible role of stored data in choosing the new state,
while b is the possible change to the stored data. s is an artifact of how we
have chosen to represent the stored data as an infinite tape. While it may
seem like a limitation to be only able to examine and change one square of
the tape at a time, this can in fact be overcome by the addition of a suitable
number of intermediate internal states and transitions, and it simplifies the
analysis considerably.

144 CHAPTER 3. COMPUTABILITY AND COMPLEXITY

The computation proceeds this way step by step, starting from the input
w. It terminates exactly when it reaches the stop state, Qm. When the
computation halts, whatever string of symbols from A remain on the tape to
the right of the scanning head, say v = σj0σj1 . . . σjp (from left to right), we
call the string v the output of the computation.

?
Qm

σj0 σj1 σj2 σj3· · · · · · σjp

Note that a computation from a given input w may not terminate, because
we need not ever reach the stop state Qm.

Example 3.3.2 Consider the following TM on the alphabet A = {0, 1}:
states: Q0, Q1, Q2

table: (Q0, a, ā,+1, Q0), for a ∈ A, where ā = 1− a,
(Q0, ∗, ∗,−1, Q1)
(Q1, b, b,−1, Q1), for b ∈ A,
(Q1, ∗, ∗,+1, Q2)
(Q2, a, a, 0, Q2), a ∈ A ∪ {∗}

On an input of, say, w = 1011101, the machine terminates with output
0100010. In general, on input w ∈ A∗ the machine terminates with output w̄
which is equal to w with 0s and 1s switched. (This operation is also known
as the binary “ones complement”.)

Example 3.3.3 A = {1}
states: Q0, Q1

table: (Q0, 1, 1,+1, Q0)
(Q0, ∗, 1,+1, Q0)
(Q1, a, a, 0, Q1), a ∈ A ∪ {∗}

Then no matter what the starting input is, say w = 1 . . . 1 in A∗, this
machine does not terminate: it just keeps adding 1’s to the right of w forever.

Definition 3.3.4 We call a decision problem (A,P) decidable if there is a
Turing machine M on some finite alphabet B ⊇ A ∪ {Y,N} such that for
every word w ∈ A∗:

w ∈ P ⇒ on input w the machine M halts with output Y
w 6∈ P ⇒ on input w the machine M halts with output N

3.4. THE CHURCH-TURING THESIS 145

Otherwise, P is called undecidable.

3.4 The Church-Turing Thesis

We have now formalized the concept of decidability using the Turing machine
model of computation. In this section we will discuss alternative ways to
formalize this concept, and see that they are all equivalent.

3.4.A Register Machines

First we will discuss in detail one more model of computation which is closer
to the operation of real-world computers: the so-called register machines.

Definition 3.4.1 A register machine N on an alphabet A = {σ1, . . . , σk}
is a program consisting of a finite list 1 : I1, . . . , n : In of consecutively
numbered instructions, each of which is one of the following types:

ADDj Rm, 1 ≤ j ≤ k; m = 1, 2, . . .
DEL Rm, m = 1, 2, . . .
CLR Rm, m = 1, 2, . . .
Rp←Rm, m, p = 1, 2, . . .
GO TO `, 1 ≤ ` ≤ n
IF FIRSTj Rm GO TO ` 1 ≤ j ≤ k; 1 ≤ ` ≤ n; m = 1, 2, . . .
STOP

We assume moreover that Ii = STOP if and only if i = n.

To understand the operation of this machine, imagine an infinite list of
registers R1, R2, . . . , each of which is capable of storing an arbitrary word in
A∗. Then the meaning of each instruction in the above list is the following:

ADDj Rm: add σj to the right of (the word in) Rm
DEL Rm: delete the leftmost symbol in Rm
CLR Rm: erase the word in Rm
Rp←Rm: replace the word in Rp by the word in Rm
GO TO `: go the `th instruction ` : I`
IF FIRSTj Rm GO TO `: if the word in Rm starts with σj, go to the

`th instruction; otherwise go to the next in-
struction

146 CHAPTER 3. COMPUTABILITY AND COMPLEXITY

STOP: halt the computation.

Using this, we can now describe the computation of the register machine
(RM) N on any input w ∈ A∗: Put this input w in the first register R1 (with
all other registers empty). Follow the instructions 1 : I1, . . . , ` : I` as above
in order (unless of course a GO TO instruction is met). This computation
terminates exactly when we reach (if ever) In : STOP. If v ∈ A∗ is the word
in the register R1, when the computation stops, we call v the output of the
computation. Again a computation from a given input w may not terminate.
Also note that if the program forN mentions at most the registers R1, R2,. . . ,
Rm, then these are the only registers used in the computation on any input.

Example 3.4.2 Consider the following RM on the alphabet A = {1, �} =
{σ1, σ2}

1: IF FIRST1 R1 GO TO ??
2: DEL R1
3: IF FIRST1 R1 GO TO ??
4: GO TO ??
5: DEL R1
6: ADD1 R2
7: GO TO ??
8: DEL R1
9: ADD1 R2

10: GO TO ??
11: R1←R2
12: STOP

Then on input 1 1 . . . 1︸ ︷︷ ︸
n

� 1 1 . . . 1︸ ︷︷ ︸
m

the machine terminates with output 1 1 . . . 1︸ ︷︷ ︸
n+m

(n,m ≥ 1). Thus it performs addition in unary notation.

Example 3.4.3 Consider the alphabet A = {1}, and the machine:

1: ADD1 R1
2: GO TO 1
3: STOP

Then this RM does not terminate on any input in A∗.

3.4. THE CHURCH-TURING THESIS 147

Although the TM and RM models of computation are quite different, it
can be shown that they are equivalent, in the sense that whatever can be
computed using one of the models can be computed with the other, and
vice versa. More precisely, consider two finite alphabets A,B and a partial
function f : A∗ → B∗, that is a function whose domain is a subset of A∗ and
which takes values in B∗. (Normally, when we write g : X → Y we mean
that g is a total function with domain exactly X and values in Y . We will
however use this notation below even if the domain of g is only a (possibly
proper) subset of X, but in this case we will explicitly state that g is partial.)

Definition 3.4.4 f : A∗ → B∗ is TM-computable if there is a finite alphabet
C ⊇ A ∪ B and a Turing Machine M on C such that for each input w ∈
A∗(⊆ C∗), M terminates on w iff w is the domain of f (i.e. f(w) is defined),
and in that case the output of M on input w is f(w).

We define what it means for f to be RM-computable in a similar way.
We can then show

Theorem 3.4.5 TM-computable = RM-computable.

This is a programming exercise and we will not discuss it in detail here.
First, we show that given a RM N on an alphabet C, one can construct a TM
M on the alphabet D = C ∪ {�}, such that if we put w ∈ C∗ as input in N
and the same input w ∈ C∗ in M , then N terminates on w iff M terminates
on w, and for such w the outputs of N and M are the same.

Specifically, we assume that all the registers mentioned in N are among
R1, R2,. . . , Rm. If R1,. . . , Rm, at some stage in the computation, contain
the words w1, . . . , wm, respectively, then the idea is to represent their contents
by the word w1 � w2 � · · · � wm� in the tape of the TM M , with the head
scanning the leftmost symbol of w1 (or the first � if w1 = θ). Then for each
instruction of N we will introduce a block of entries in the table of M , whose
effect on w1 � w2 � · · · � wm� will correspond to the effect of the instruction
of N on the corresponding register values. In the case of GOTO instructions
this simulation will preserve the same flow of control.

Conversely, we can show that given a TM M on an alphabet C, one
can construct a RM N on some alphabet D ⊇ C such that again if we put
w ∈ C∗ as input in M and N , then M terminates on w iff N terminates
on w, and for such w the outputs of M and N on w are the same. For
example, one way to do that is to take D = {σ0, σ1, . . . , σk} ∪ {Q0, . . . , Qm},

148 CHAPTER 3. COMPUTABILITY AND COMPLEXITY

if C = {σ1, . . . , σk} and M has set of states {Q0, . . . , Qm}. Now consider
a tape snapshot wQiav, which indicates that the head is in state Qi, scans
the symbol a (which could be the empty square, i.e. a = σ0), and to the
left of it is the word w ∈ {σ0, σ1, . . . , σk}∗ and to the right of it the word
v ∈ {σ0, σ1, . . . , σk}∗. Notice that at each stage of the computation of the
machine M there will only be finitely many non-empty squares. Here w is
the word which represents from left-to-right the contents of the tape starting
from the left-most non-empty square to the square just to the left of the
square scanned by the head. In case every square to the left of the head is
empty, w = θ. Similarly for v.

Example.

empty x y z
?

︸ ︷︷ ︸
w=xyσ0z

We can represent this tape snapshot in the register machine N by putting
w in R1, Qia in R2, and v in R3. Then for each entry (Qi, a,−,−,−) in the
table of M we can write a set of instructions (subroutine) for N such that the
effect of this entry on wQiav is the same as the effect of the corresponding set
of instructions on the corresponding register values. In this way, we can show
that the notions of TM-computability and RM-computability are equivalent.

3.4.B The Church-Turing Thesis

As mentioned earlier, many alternative models of computationM have been
proposed over the years, and for each one we have a corresponding notion of
an M-computable function. Two common ones which we will not discuss,
but which you may encounter later, are the Lambda Calculus and the theory
of Recursive Functions. Another one is the theory of cellular automata, an
specific example of which is Conway’s Game of Life. It turns out that in all
these cases, one can again prove that M-computable = TM-computable, so
all these models are, in that sense, equivalent to the Turing machine model.

It is accepted today that the informal notion of algorithmic computability
is represented correctly by the precise notion of TM-computability (= RM-
computability = . . .), in a way similar to the assertion that the formal ε-δ
definition of continuity of functions of a real variable represents accurately

3.5. UNIVERSAL MACHINES 149

the intuitive concept of continuity. This (extramathematical) assertion that
“computability = TM-computability” is referred to as the Church-Turing
Thesis.

More explicitly, consider a partial function f : A∗ → B∗ (A,B finite
alphabets). We call it intuitively computable if there is an algorithm which
for each input w ∈ A∗ terminates (in finitely many steps) exactly when w
is in the domain of f and in that case produces the output f(w). Then the
Church-Turing Thesis is the assertion:

intuitively computable = TM-computable.

We will simply say computable instead of TM-computable from now on.

Remark. Any decision problem (A,P) may be identified with the (total)
function f : A∗ → {Y,N}∗ given by f(w) = Y if w ∈ P and f(w) = N if
w 6∈ P . Thus (A,P) is decidable iff f is computable.

3.5 Universal Machines

So far we have been discussing machines which represent the operation of
a single computer program. But what about a computer itself, i.e. a single
machine which can execute any program? It turns out that our existing
formalization is sufficient to deal with this more general case as well. After
a bit of thought, this should come as no surprise, since after all the inside
of a computer is just a program which sequentially reads and executes the
instructions of other programs. We will now describe how to formalize this
notion.

To start with, we can effectively code the words in an arbitrary finite
alphabet A = {σ1, . . . , σk} by using words in the binary alphabet {0, 1}.
For example, if k = 22 we can use five letter words from {0, 1} to represent
each individual symbol in A, and thus every word of length n from A can
be encoded as a word of length 5n in the binary alphabet. (We could even
use the unary alphabet {1} instead of the binary alphabet, but this would
require exponential increase in the length of the word if A has more than one
symbol. This does not affect computability issues, but it can certainly affect
the complexity issues discussed later.)

So let’s assume that we have fixed some simple method for encoding
words in a given alphabet A by binary words and refer to the binary word

150 CHAPTER 3. COMPUTABILITY AND COMPLEXITY

b(w) encoding the word w ∈ A∗ as the binary code of w. It is now not hard
to see that given a TM M on A we can construct a TM M∗ on {0, 1} such
that for each w ∈ A∗ the input-output behavior of M on w is exactly the
same on the input-output behavior of M∗ on b(w).

Thus, without any loss of generality, we can restrict ourselves to discussing
TMs on the binary alphabet. Any such machine M is simply given by a
finite table of 5-tuples which again can be easily coded as a word in the
binary alphabet. We call this the binary code of M and denote it by b(M).
By carrying out a somewhat complicated programming project, one can now
construct a universal Turing Machine. This is a TM U on {0, 1} such that
for any TM M on {0, 1} and any input w = {0, 1}∗, if we put b(M)∗w (where
∗ = empty square) as input in U (so that in the beginning the head scans
the first symbol of b(M)), then U terminates on this input iff M terminates
on w, and in this case their outputs are the same. So we have:

Theorem 3.5.1 (Existence of universal TM) We can construct a TM
U on {0, 1} such that for any TM M on {0, 1} with binary code b(M), the
input-output behavior of U on b(M) ∗ w (w ∈ {0, 1}∗) is the same as the
input-output behavior of M on w.

Remark. The universal TM was conceived theoretically by Turing in the
1930’s. Any personal computer today is essentially a practical implementa-
tion of this idea.

3.6 The Halting Problem

We will now use theorem ?? to show that the so-called halting problem for
TM is undecidable. This is precisely formulated as:

A = {0, 1}
P = {b(M) : M is a TM on {0, 1} and M

terminates on the empty input}.
(HALTING)

Theorem 3.6.1 (Turing) HALTING is undecidable.

Proof. Consider the universal TM U . For each x ∈ {0, 1}∗ consider the
TM Ux which on the empty input first prints x ∗ x, moves the head over

3.7. UNDECIDABILITY OF THE VALIDITY PROBLEM 151

the first symbol of the first x, and then follows U . The table of Ux is easily
obtained from the table of U by adding some further entries depending on x.

Now, if HALTING were decidable, one could easily build a TM N0 on
{0, 1} such that for any x ∈ {0, 1}∗, N0 on input x would terminate with
output 0 if Ux terminated on the empty input, and N0 on input x would
terminate with output 1 if Ux did not terminate on the empty input. By
changing N0 a little, we could then construct a TM M0 on {0, 1} such that
if N0 on input x terminates with output 1, so does M0, but if N0 on input
x terminates with output 0, then M0 does not terminate in that input. To
simplify the notation, let us write

M(w) ↓

if a TM M terminates on input w and

M(w) ↑

if it does not. Then we have for x ∈ {0, 1}∗

M0(x) ↓ ⇔ Ux(θ) ↑
⇔ U(x ∗ x) ↑ .

In particular, for any TM M on {0, 1},

M0(b(M)) ↓ ⇔ U(b(M) ∗ b(M)) ↑
⇔M(b(M)) ↑

Putting M = M0 we get a contradiction, since it cannot be the case that
both M0(b(M0)) ↑ and M0(b(M0)) ↓. a

Similarly one can of course prove that the corresponding halting problem
for RM is undecidable. More generally, given any programming language, it
is impossible to design an algorithm that will decide whether an arbitrary
program will terminate on a given input or not.

3.7 Undecidability of the Validity Problem

We have succeeded in showing that one problem—the halting problem—is
undecidable, but the prospects are not good for applying the method we

152 CHAPTER 3. COMPUTABILITY AND COMPLEXITY

used to other problems, since it depends on the halting problem being a sort
of “meta-problem” about computability. Fortunately, we can leverage this
success to show the undecidability of other problems, by using the method
of computable reductions, as follows.

Definition 3.7.1 Suppose (A,P) and (B,Q) are two decision problems. A
(total) function f : A∗ → B∗ is a (computable) reduction of P to Q if f is
computable and for any w ∈ A∗,

w ∈ P ⇔ f(w) ∈ Q.

Notice that if P is reduced to Q via f and Q is decidable, so that there
is a total computable function g : B∗ → {Y,N}∗ such that v ∈ Q⇒ g(v) =
Y, v 6∈ Q⇒ g(v) = N , then g◦f = h is computable and w ∈ P ⇒ h(w) = Y ,
w 6∈ P ⇒ h(w) = N . Thus P is decidable as well.

So if P can be reduced to Q and Q is decidable, then P is decidable. This
observation provides a general method for showing that decision problems
are undecidable. Specifically, to show that (B,Q) is undecidable, choose
an appropriate problem (A,P) that is known to be undecidable, and find
a reduction of P to Q. For then if (B,Q) were decidable, so would (A,P)
be, which we know is not the case. We will apply this method to show the
undecidability of the validity problem for an appropriate language L.

Theorem 3.7.2 (Church) There is a finite language L such that the deci-
sion problem VALIDITYL is undecidable.

Proof. First consider a variation of the halting problem, HALTINGU . This
is simply the halting problem for the universal TM U . It consists of all
w ∈ {0, 1}∗ for which U(w) ↓. Since for any TM M on {0, 1}∗, M(θ) ↓ iff
U(b(M) ∗ θ) ↓ iff U(b(M)) ↓, clearly HALTINGU is also undecidable.

Say the states of U are {Q0, Q1, . . . , Qm}. We take L to consist of the
following symbols:

0 : constant
S : unary function
< : binary relation
H : binary relation

T∗, T0, T1 : binary relations
R0, . . . , Rm : unary relations.

3.7. UNDECIDABILITY OF THE VALIDITY PROBLEM 153

Intuitively, we have in mind the following interpretation for these:

(i) 0, S,< will be the 0, successor and order on 〈Z, 0, S,<〉.

(ii) Variables will vary over Z. They will represent both the time (i.e. stage
in the computation), when restricted to ≥ 0 values (so 0 will be the
beginning, 1 the next step, 2 the next one, etc.), and also the location
of a square on the tape.

· · · · · ·

-2 -1 0 1 2

(iii) H(t, x) will be true iff t, x ∈ Z, t ≥ 0 and the head at time t scans the
square x.

(iv) T∗(t, x) will be true iff t, x ∈ Z, t ≥ 0 and the tape at time t contains
∗ (i.e. is empty) at the square x, and similarly for T0 and T1.

(v) Ri(t) will be true iff t ∈ Z, t ≥ 0, and at time t the machine is in state
Qi.

We will now assign to each w ∈ {0, 1}∗ a sentence σw in L such that

U(w) ↓ iff σw is valid.

It will be clear from our construction that the map w 7→ σw is computable.
Thus it will follow that HALTINGU can be reduced to VALIDITYL, so
VALIDITYL must be undecidable.

We will first construct some preliminary sentences in L:

(i) Z is the conjunction of the following sentences:

∀x(¬x < x)

∀x∀y∀z(x < y ∧ y < z ⇒ x < z)

∀x∀y(x < y ∨ x = y ∨ y < x)

∀x∃y(S(y) = x)

∀x(x < S(x))

∀x∀y(x < y ⇒ y = S(x) ∨ S(x) < y)

(expressing the usual properties of 〈Z, 0, S,<〉).

154 CHAPTER 3. COMPUTABILITY AND COMPLEXITY

(ii) NOCONFLICT is the conjunction of the following sentences:

∀t(0 = t ∨ 0 < t⇒ R0(t) ∨ · · · ∨Rm(t))

∀t(0 = t ∨ 0 < t⇒ ¬Ri(t) ∨ ¬Ri′(t)), 0 ≤ i < i′ ≤ m

∀t(0 = t ∨ 0 < t⇒ ∃xH(t, x))

∀t∀x∀x′((0 = t ∨ 0 < t) ∧ x 6= x′ ⇒ ¬H(t, x) ∨ ¬H(t, x′))

∀t∀x(0 = t ∨ 0 < t⇒ T∗(t, x) ∨ T0(t, x) ∨ T1(t, x))

∀t∀x(0 = t ∨ 0 < t⇒ (¬T∗(t, x) ∨ ¬T0(t, x)))

∀t∀x(0 = t ∨ 0 < t⇒ (¬T0(t, x) ∨ ¬T1(t1, x))

∀t∀x(0 = t ∨ 0 < t⇒ (¬T1(t, x) ∨ ¬T∗(t, x))

expressing that at each time t, M is in exactly one state, and scans
exactly one square, and for each time t and each square x there is
exactly one symbol on that square (possibly empty).

(iii) STARTw is the conjunction of the following sentences, where w =
w0 . . . wn−1 with wi ∈ {0, 1}, and we use the abbreviation

ī = S(S(. . . S(0)) . . .)

(i times) for all 0 ≤ i ∈ Z:

R0(0)

H(0, 0)

Tw(i)(0, ī), 0 ≤ i < n

∀x(n̄ < x ∨ n̄ = x⇒ T∗(x))

∀x(x < 0⇒ T∗(x))

(expressing that the machine starts in state Q0 with the head on the
0th square and on the input w).

(iv) NONSTOP is the sentence

∀t(0 = t ∨ 0 < t⇒ ¬Rm(t))

expressing that the machine does not stop.

3.7. UNDECIDABILITY OF THE VALIDITY PROBLEM 155

(v) STEP is the sentence constructed as follows:

Let (Qi, a, b, s, Qj) be an entry in the table of U . Say s = +1. (Appro-
priate changes have to be made in the formula below in case s = 0 or
s = −1.) Assign to this entry the following sentence:

∀t∀x[0 = t ∨ 0 < t⇒ (Ri(t) ∧H(t, x) ∧ Ta(t, x)⇒
Rj(S(t)) ∧H(S(t), S(x)) ∧ Tb(S(t), x))]

expressing the action of the machine following this entry. Then STEP
is the conjunction of all these sentences for all entries in the table.

Now let ρw be the conjunction of all the sentences Z, NOCONFLICT
STARTw, NONSTOP, STEP, and put σw = ¬ρw. Then we have

U(w) ↓ iff σw is valid.

To see this, first notice that if U(w) ↑, then σw is not valid, i.e. ρw has a
model. For we can take as such a model

M = 〈Z, 0, S,<,HM, TM∗ , TM0 , TM1 , RM0 , . . . , RMm 〉,

where 0, S,< have their usual meaning and HM, . . . , RMm are interpreted as
in (3)-(5) before.

Conversely, assume that U(w) ↓, say the computation on input w termi-
nates at time N ≥ 0. If σw failed to be valid (working towards a contradic-
tion), ρw would have some model

A = 〈A, 0A, SA, <A, HA, TA∗ , TA0 , TA1 , RA0 , . . . , RAm〉.

Since A |= Z, clearly A contains a copy of Z, with 0A corresponding to 0,
SA(0A) to 1, etc. Denote by n the element of A corresponding to n ∈ Z.
(In general, A contains many more other elements than these n.) Then it is
easy to see that for t ∈ Z with t ≥ 0 and x ∈ Z, HA(t,x) will be true iff
the head at time t scans the square x, and similarly for TA∗ , . . . , R

A
m. This

can be proved, for example, by induction on t. Thus RAm(N) is true and this
contradicts that A |= NONSTOP. a

156 CHAPTER 3. COMPUTABILITY AND COMPLEXITY

3.8 The Hilbert Tenth Problem

Using the method of reduction it has been also shown that the Hilbert 10th
Problem (example ??) is undecidable. More precisely, consider the alphabet

A = {x, 0, 1, ·,+,−, (,),̂ }.

Encoding the variable xn by x(n written in binary), natural numbers by their
binary notation, and using ˆ for exponentiation, any polynomial in several
variables with integer coefficients can be encoded by a word in this alphabet.

Example 3.8.1 x2
1 − 7x2

2 − 1 will be encoded by the word

(x(1))̂ (10) + (−111)(x(10))̂ (10) + (−1).

Let now DIOPHANTINE EQUATIONS be the decision problem (A,P)
where

P = {w ∈ A∗ : w encodes a polynomial (with integer coefficients

in several variables) which has an integer solution}.

We now have

Theorem 3.8.2 (Matyasevich) DIOPHANTINE EQUATIONS is unde-
cidable.

So this gives a negative answer to the Hilbert 10th Problem.

3.9 Decidable Problems

We will now discuss some examples of decidable problems. We will present
them informally, by giving the instances together with the question defining
the set of instances that constitutes the decision problem. It will be assumed
that then these can be encoded in some reasonable way as formal decision
problems (A,P) as in section ??.

Example 3.9.1 ELEMENTARY ALGEBRA is the following decision prob-
lem:

Instance. A sentence σ in the first-order language L = {0, 1,+, ·}.

3.9. DECIDABLE PROBLEMS 157

Question. Is σ true in 〈R, 0, 1,+, ·〉, i.e. is σ ∈ Th(R, 0, 1,+, ·)?
Tarski in 1949 has shown that ELEMENTARY ALGEBRA is decidable.

Remark. On the other hand, if we consider the corresponding problem ELE-
MENTARY ARITHMETIC for Th(N , 0, S,+, ·, <), then Church has shown
in the 1930’s that it is undecidable (this also follows easily from ??).

Example 3.9.2 SATISFIABILITY is the following decision problem:

Instance. A finite set U = {u1, . . . , uk} of propositional variables and C =
{c1, . . . , cm} a finite set of clauses ci = {`i,1, . . . , `i,ni

}, where each `i,j is a
literal from U , i.e. a variable in U or its negation. (As usual we write ūi
instead of ¬ui in this context.)

Question. Is C satisfiable (i.e. is there a valuation ν : U → {T, F} which
makes every clause ci true, recalling that the clause ci as above represents
the disjunction `i,1 ∨ · · · ∨ `i,ni

)?

Using truth tables it is clear that SATISFIABILITY is decidable.

Example 3.9.3 TRAVELING SALESMAN is the following decision prob-
lem:

Instance. A finite set {c1, . . . , cm} of “cities”, a distance function d(ci, cj) ∈
{1, 2, . . . } for i 6= j, and a bound B ∈ {1, 2, . . . }.
Question. Is there a tour of all the cities with total length ≤ B, i.e. an
ordering cπ(1), cπ(2), . . . , cπ(m) of {c1, . . . , cm} such that

m−1∑
i=1

d(cπ(i), cπ(i+1)) + d(cπ(m), cπ(1)) ≤ B?

Again, by listing all possible orderings and calculating the above sum for
each one of these, it is trivial to see that this problem is decidable.

Example 3.9.4 PRIMES is the following decision problem:

Instance. An integer n ≥ 2.

Question. Is n prime?

This is also decidable as we can go through all the integers between 2 and
n− 1 and check whether they divide n.

158 CHAPTER 3. COMPUTABILITY AND COMPLEXITY

3.10 The Class P
We have so far been discussing what problems are computable in princi-
ple. However, a question of more practical interest is the following: given a
problem which is computable, can we compute it efficiently? The study of
efficiency is also called computational complexity. We will concentrate here
on time complexity (how long it takes to solve the problem), but one can also
discuss, for example, space complexity (how much “memory” storage is used
in solving it). A natural measure of time complexity for us is the number of
steps in the computation of a TM that decides a given problem.

Since different problems require different amounts of input, in order to
compare the complexities of different algorithms and problems, we must mea-
sure complexity as a function of the input size. In addition, with computer
speeds increasing rapidly, small instances of a problem can usually be solved
no matter how difficult the problem is. For this reason, and also to eliminate
the effect of “overhead” time, we will consider only the asymptotic complex-
ity as the size of the input increases. First we recall the “big-O notation,”
which gives a rigorous way of comparing asymptotic growth rates.

Definition 3.10.1 Given two functions f, g : N→ N we define

f = O(g) iff ∃n0 ∃C ∀n ≥ n0(f(n) ≤ Cg(n)).

For example, if p(n) is a polynomial, then p(n) = O(nd) for large enough d.

Definition 3.10.2 Given any T : N → N, we let TIME(T) consist of all
decision problems (A,P) which can be decided by a TM in time t for some
t = O(T).

More precisely, a decision problem (A,P) is in TIME(T) if there is t =
O(T) and a TM M on some alphabet B ⊇ A∪{Y,N} such that for w ∈ A∗:

(i) w ∈ P ⇒ on input w, M halts in ≤ t(|w|) steps with output Y .

(ii) w 6∈ P ⇒ on input w, M halts in ≤ t(|w|) steps with output N

(here |w| = length of the word w).
What sort of growth rate should we require of an algorithm to consider

it manageable? After all, we must expect the time to increase somewhat
with the input size. It turns out that the major distinctions in complexity
are between “polynomial time” algorithms and faster-growing ones, such as
exponentials.

3.10. THE CLASS P 159

Definition 3.10.3 A decision problem is in the class P (or it is polynomi-
ally decidable) if it is TIME(nd) for some d ≥ 0, i.e. it can be decided in
polynomial time.

Problems in the class P are considered tractable (efficiently decidable)
and the others intractable. It is clear that the class P provides an upper
limit for problems that can be algorithmically solved in realistic terms. If a
problem is in P , however, it does not necessarily mean that an algorithm for
it can be practically implemented, for example, it could have time complexity
of the order of n1,000,000 or of the order n3 but with enormous coefficients.
However, most natural problems that have been shown to be polynomially
decidable have been found to have efficient (e.g., very low degree) algorithms.
Moreover, the class of problems in P behaves well mathematically, and is
independent of the model of computation, since any two formal models of
computation can be mutually simulated within polynomial time.

Remark. Time complexity as explained here is a worst case analysis. If a
problem P is intractable, then there is no polynomial time algorithm which
for all n and all inputs of length n will decide P . But one can still search for
approximate algorithms that work well on the average or for most practical
(e.g., small) instances of the problem or give the correct answer with high
probability, etc.

Example 3.10.4 ELEMENTARY ALGEBRA is intractable (Fisher-Rabin
1974). In fact it is in TIME(22cn

) for some c > 0 but not in TIME(2dn) for
any d > 0; that is, it is super-exponential.

Example 3.10.5 LINEAR PROGRAMMING is the decision problem given
by:

Instance. An integer matrix (vij) for 1 ≤ i ≤ m and 1 ≤ j ≤ n, along with
integer vectors D = (di)

m
i=1 and C = (cj)

n
j=1, and an integer B.

Question. Is there a rational vector X = (xj)
n
j=1 such that

∑n
j=1 vijxj ≤ di,

for 1 ≤ i ≤ m, and
∑n

j=1 cjxj ≥ B?

LINEAR PROGRAMMING turns out to be in P (Khachian, 1979).

160 CHAPTER 3. COMPUTABILITY AND COMPLEXITY

3.11 The Class NP and the P = NP Problem

Although a large class of problems have been classified as tractable or in-
tractable, there is a vast collection of decision problems, many of them of
great practical importance, that are widely assumed to be intractable but
no one until now has been able to demonstrate it. These are the so-called
NP-complete problems. In order to introduce these problems, we must first
define the class NP of non-deterministic polynomial decision problems.

Definition 3.11.1 Let (A,P) be a decision problem. We say that (A,P) is
in the class NP if there is a TM M on an alphabet B ⊇ A ∪ {Y,N} and a
polynomial p(n) such that for any w ∈ A∗:

w ∈ P ⇔ ∃v ∈ B
∗ such that |v| ≤ p(|w|) and on input w ∗ v, M

stops with output Y after at most p(|w|) many steps.

In other words, w ∈ P iff there is a “guess” v, of length bounded by a
polynomial in the length of w, such that w together with v pass a polynomial
acceptance test. (This can be also viewed as a non-deterministic polynomial
time algorithm.)

Example 3.11.2 SATISFIABILITY is in NP , since if we can guess a truth
assignment, we can verify that it satisfies the given set of clauses in polyno-
mial time.

Example 3.11.3 Similarly, TRAVELING SALESMAN is in NP , since if
we guess the order of the set of cities, we can calculate whether the length
of the tour is ≤ B in polynomial time.

In fact a vast number of problems like these, which involve some kind of
search, are in NP .

Remark. Clearly P ⊆ NP ⊆
⋃
d TIME(2n

d
).

Problem. A famous problem in theoretical computer science is whether

P = NP ,

that is, whether any problem with an efficient nondeterministic algorithm
also has an efficient deterministic algorithm. This is known, unsurprisingly,
as the P = NP Problem. Recently the Clay Mathematics Institute included
the P = NP Problem as one of its seven Millenium Prize Problems, offering
$1,000,000 for its solution! The prevailing assumption today is that P 6= NP .

3.12. NP-COMPLETE PROBLEMS 161

3.12 NP-Complete Problems

We can get a better understanding of the P = NP problem by discussing
the notion of an NP-complete problem. The NP-complete problems form
sort of a “core” of the “most difficult” problems in NP . Recall the concept
of a computable reduction (definition ??). We adapt this to the setting of
complexity as follows:

Definition 3.12.1 A (total) function f : A∗ → B∗, where A,B are finite
alphabets, is polynomial-time computable if there is a TM M on a finite
alphabet C ⊇ A ∪B, and a polynomial p, such that for every input w ∈ A∗,
M terminates on at most p(|w|) steps with output f(w).

Unsurprisingly, a polynomial-time reduction is a computable reduction
which is in addition polynomial-time computable. We now say that

Definition 3.12.2 A decision problem (B,Q) isNP-complete if it is inNP ,
and for every NP problem (A,P) there is a polynomial-time reduction of P
to Q. (That is, there is a polynomial-time computable function f : A∗ → B∗

such that w ∈ P if and only if f(w) ∈ Q.)

An NP-complete problem is in some sense a hardest possible problem
in NP . For example, it is clear that if (B,Q) is in P and (A,P) can be
polynomial-time reduced to Q, then also (A,P) is in P . It therefore follows
that if any NP-complete problem is in P , then P = NP . Thus the P = NP
question is equivalent to the question of whether any given NP-complete
problem is in P .

It is clear from the definition that all NP-complete problems are “equiv-
alent” in some sense, since each one can be reduced to the other by a
polynomial-time computable function. We have not yet established how-
ever that there are any NP-complete problems. This was first shown by
Cook and Levin in 1971.

Theorem 3.12.3 (Cook, Levin) SATISFIABILITY is NP-complete.

Karp in 1972 has shown that TRAVELING SALESMAN and many other
combinatorial problems are NP-complete, and since that time hundreds of
others have been discovered in many areas of mathematics and computer
science.

162 CHAPTER 3. COMPUTABILITY AND COMPLEXITY

We will give a proof of this theorem shortly, but first let us say a few
things about the complexity of PRIMES, because it occupies a special place
among “difficult” problems. Given a decision problem (A,P), its complement
is the decision problem (A,∼ P), where ∼ P = A∗ \ P . It is clear that a
problem is decidable (or in P) iff its complement is decidable (or in P), but
it is unknown whether a problem is in NP iff its complement is NP .

We denote by “co-NP” the class of problems whose complements are in
NP . Thus P ⊆ NP∩co-NP , but whether NP = co-NP is unknown. Now
it is easy to see that PRIMES in co-NP . (In precisely formulating PRIMES
we assume that every positive integer is represented by its binary notation.
If numbers were represented in unary notation, then clearly PRIMES would
be in P .) With some work, using some elementary number theory, it can be
shown that PRIMES is also in NP . Thus

PRIMES ∈ NP ∩ co-NP .

Miller in 1976 has shown that if one assumes a widely believed but still
unproven hypothesis, the so-called Generalized Riemann Hypothesis, then
actually PRIMES is in P , but it is still unknown whether PRIMES is actually
in P . (Addendum: In 2002 Agrawal, Kayal and Saxena proved that PRIMES
is indeed in P .)

Proof of ??. The proof is a variation of that of ??.
To fix a formal encoding of the satisfiability problem, we simply view

each instance as a formula in propositional logic in conjunctive normal form
(cnf), and which can thus be viewed as a word in the alphabet

C = {p, 0, 1,¬,∧,∨, (,)},

where we write pn, with n in binary, instead of the propositional variable pn.
Consider now an arbitrary decision problem (A,P) which is in the class

NP . We will find a polynomial-time computable map f : A∗ → C∗ such
that, for each w ∈ A∗, f(w) is a formula in cnf and

w ∈ P ⇔ f(w) is satisfiable.

By a slight reformulation of the definition of what it means to be in the
class NP , we can find an alphabet B ⊇ A, a polynomial p(n) > n and a
TM M on B with states {Q0, . . . , Qm} (Q0 is the start and Qm is the stop

3.12. NP-COMPLETE PROBLEMS 163

state), such that all the entries in the table of M that begin with Qm are of
the form (Qm, b, b, 0, Qm), and we have for any w = a0a1 . . . an−1 ∈ A∗:

w ∈ P iff there is an input

?

Q0

a0 a1 an−1 ∗
−p(n) 0 1 n− 1 n p(n)

· · · · · · · · ·

in which ai is in square i, 0 ≤ i ≤ n− 1, square n is empty, as are all squares
j < 0 and j > p(n) (but some symbols in B are possibly occupying some
squares between n + 1 and p(n)), and on which M terminates in at most
p(n) many steps (and thus at each step of the computation the machine only
visits squares with index −p(n) ≤ j ≤ p(n)).

Let A = {σ1, . . . , σK}, B = {σ1, . . . , σK , σK+1, . . . , σL}, and finally let σ0

denote the empty square.
Associate with M and each n = 0, 1, 2, . . . the following list of proposi-

tional variables:

(i) Ri,k, 0 ≤ i ≤ p(n), 0 ≤ k ≤ m,

(ii) Hi,j, 0 ≤ i ≤ p(n), −p(n) ≤ j ≤ p(n),

(iii) Ti,j,`, 0 ≤ i ≤ p(n), −p(n) ≤ j ≤ p(n), 0 ≤ ` ≤ L.

The intended meanings of these variables are as follows:

(i) Ri,k being true means that at time i the machine is in state Qk.

(ii) Hi,j being true means that at time i the head scans square j.

(iii) Ti,j,` being true means that at time i the tape contains σ` at square j.

(We can of course view these propositional variables as part of our standard
list p0, p1, p2,)

Consider now the following clauses in these variables, associated to each
w = σk0σk1 . . . σkn−1 ∈ A∗, 1 ≤ ki ≤ K:

164 CHAPTER 3. COMPUTABILITY AND COMPLEXITY

(a)

Ri,0 ∨ · · · ∨Ri,m

¬Ri,k ∨ ¬Ri,k′ (0 ≤ i ≤ p(n), 0 ≤ k < k′ ≤ m)
Hi,−p(n) ∨ · · · ∨Hi,p(n)

¬Hi,j ∨ ¬Hi,j′ (0 ≤ i ≤ p(n), −p(n) ≤ j < j′ ≤ p(n))
Ti,j,0 ∨ · · · ∨ Ti,j,L
¬Ti,j,` ∨ ¬Ti,j,`′ (0 ≤ i ≤ p(n), −p(n) ≤ j ≤ p(n),

0 ≤ ` < `′ ≤ L)

(expressing that at each time i the machine is in exactly one state
and scans exactly one square and for each time i and square j there is
exactly one symbol on j, possibly ∗).

(b)

R0,0; H0,0; T0,j,kj
(0 ≤ j ≤ n− 1)

T0,n,0

T0,j,0 (j < 0)

(these express that the machine starts at time 0 at state Q0 with the
head at the 0th square and on input as in the preceding picture)

(c)

Rp(n),m

(this expresses that the machine terminates at time ≤ p(n))

(d) Let (Qk, σ`, σ`′ , s, Qk′) be an entry in the table of M . Say s = +1.
(Appropriate changes in the formula below have to be made if s = 0
or s = −1.) Assign to this entry the following clauses for each 0 ≤ i <
p(n), −p(n) ≤ j < p(n):

¬Ri,k ∨ ¬Hi,j ∨ ¬Ti,j,` ∨Ri+1,k′

¬Ri,k ∨ ¬Hi,j ∨ ¬Ti,j,` ∨Hi+1,j+1

¬Ri,k ∨ ¬Hi,j ∨ ¬Ti,j,` ∨ Ti+1,j,`′

(these express the action of the machine, when at time i it is at state
Qk and scans σ` on the jth square). Note here that ¬Ri,k ∨ ¬Hi,j ∨
¬Ti,j,` ∨Ri+1,k′ is equivalent to Ri,k ∧Hi,j ∧ Ti,j,` ⇒ Ri+1,k′ .

3.12. NP-COMPLETE PROBLEMS 165

Finally, let f(w) be the conjunction of all the formulas (clauses) given in
(a), (b), (c), (d). It is easy to check that f is a polynomial-time computable
function. We verify that w ∈ P ⇔ f(w) is satisfiable.

If w ∈ P , then we can find an input as in the previous picture with the
properties stated there and we assign truth values to the variables according
to their intended meaning in this computation associated with that input.
This valuation clearly satisfies all the clauses of f(w).

Conversely, assume a valuation ν satisfies all the clauses in f(w). Because
ν satisfies all the clauses in (a), (b), for each −p(n) ≤ j ≤ p(n) there is a
unique σk(j) (0 ≤ k(j) ≤ L) with ν(T0,j,k(j)) = T . Consider the input for M
that has σk(j) in the jth square. Because kj = k(j) for 0 ≤ j ≤ n − 1 and
k(n) = 0, this is exactly an input as in the preceding picture. If we start M
on that input then it is easy to see, since ν satisfies all the clauses in (a),
(d), that for all 0 ≤ i ≤ p(n), ν(Ri,k) = T iff at time i in this computation
the machine is in state Qk, and similarly for Hi,j and Ti,j,`. This is proved
by induction on i. But then, since ν satisfies (c), we must have that the
computation of M on that inputs stops in at most p(n) steps, so w ∈ P . a

166 CHAPTER 3. COMPUTABILITY AND COMPLEXITY

Appendix A

A list of tautologies and
equivalences in propositional
logic

A.1 Tautologies

1. ((A ∧ A)⇔ A)

2. ((A ∨ A)⇔ A)

3. ((A ∧B)⇔ (B ∧ A))

4. ((A ∨B)⇔ (B ∨ A))

5. ((A ∧ (B ∧ C))⇔ ((A ∧B) ∧ C))

6. ((A ∨ (B ∨ C))⇔ ((A ∨B) ∨ C))

7. ((A ∧ (B ∨ C))⇔ ((A ∧B) ∨ (A ∧ C)))

8. ((A ∨ (B ∧ C))⇔ ((A ∨B) ∧ (A ∨ C)))

9. ((A ∧ (A ∨B))⇔ A)

10. ((A ∨ (A ∧B))⇔ A)

11. (¬(A ∨B)⇔ (¬A ∧ ¬B))

167

168 APPENDIX A. TAUTOLOGIES AND EQUIVALENCES

12. (¬(A ∧B)⇔ (¬A ∨ ¬B))

13. ((A ∧ >)⇔ A), > any tautology

14. ((A∨ ⊥)⇔ A), ⊥ any contradictory wff

15. ((A∧ ⊥)⇔⊥)

16. ((A ∨ >)⇔ >)

17. ((A⇒ B)⇔ (¬B ⇒ ¬A))

18. (A ∨ ¬A)

19. (A⇒ A)

20. (A⇔ A)

21. (¬¬A⇔ A)

22. (A⇒ (A ∨B))

23. ((A ∧B)⇒ A)

24. (((A⇒ B) ∧ A)⇒ B)

25. (((A⇒ B) ∧ ¬B)⇒ ¬A)

26. ((¬A⇒ A)⇔ A)

27. (¬A⇒ (A⇒ B))

28. (A ∨ (A⇒ B))

29. (A⇒ (B ⇒ A))

30. (((A⇒ B) ∧ (B ⇒ C))⇒ (A⇒ C))

31. ((A⇒ B) ∨ (C ⇒ A))

32. ((A⇒ B) ∨ (¬A⇒ B))

33. ((A⇒ B) ∨ (A⇒ ¬B))

34. ((A⇒ B)⇒ ((B ⇒ C)⇒ (A⇒ C)))

A.2. EQUIVALENCES 169

35. (¬A⇒ (¬B ⇔ (B ⇒ A)))

36. ((A⇒ B)⇒ (((A⇒ C)⇒ B)⇒ B))

A.2 Equivalences

All the formulas in each row are equivalent to each other.

37. (A⇒ B), (¬A ∨B), (¬B ⇒ ¬A), ((A ∧B)⇔ A), ((A ∨B)⇔ B)

38. ¬(A⇒ B), (A ∧ ¬B)

39. (A⇔ B), ((A ∧B) ∨ (¬A ∧ ¬B)), ((¬A ∨B) ∧ (¬B ∨ A))

40. (A⇔ B), ((A⇒ B) ∧ (B ⇒ A)), (¬A⇔ ¬B), (B ⇔ A)

41. (A⇔ B), ((A ∨B)⇒ (A ∧B))

42. ¬(A⇔ B), (A⇔ ¬B), (¬A⇔ B)

43. A, ¬¬A, (A ∧ A), (A ∨ A), (A ∨ (A ∧B)), (A ∧ (A ∨B))

44. A, (¬A⇒ A), ((A⇒ B)⇒ A), ((B ⇒ A) ∧ (¬B ⇒ A))

45. A, (A ∧ >), (A∨ ⊥), (A⇔ >), (> ⇒ A)

46. ¬A, (A⇒ ¬A), ((A⇒ B) ∧ (A⇒ ¬B))

47. ¬A, (A⇒⊥), (A⇔⊥)

48. ⊥, (A∧ ⊥), (A⇔ ¬A)

49. >, (A ∨ >), (A⇒ >), (⊥⇒ A)

50. (A ∧B), (B ∧ A), (A ∧ (¬A ∨B)), ¬(A⇒ ¬B)

51. (A ∨B), (B ∨ A), (A ∨ (¬A ∧B)), (¬A⇒ B), ((A⇒ B)⇒ B)

52. (A ⇒ (B ⇒ C)), ((A ∧ B) ⇒ C), (B ⇒ (A ⇒ C)), ((A ⇒ B) ⇒
(A⇒ C))

53. (A⇒ (B ∧ C)), ((A⇒ B) ∧ (A⇒ C))

170 APPENDIX A. TAUTOLOGIES AND EQUIVALENCES

54. (A⇒ (B ∨ C)), ((A⇒ B) ∨ (A⇒ C))

55. ((A ∧B)⇒ C), ((A⇒ C) ∨ (B ⇒ C))

56. ((A ∨B)⇒ C), ((A⇒ C) ∧ (B ⇒ C))

57. (A⇔ (B ⇔ C)), ((A⇔ B)⇔ C)

Appendix B

A list of validities in first order
logic

1. ∀x∀yA⇔ ∀y∀xA

2. ∃x∃yA⇔ ∃y∃xA

3. ∀xA⇒ ∃xA

4. ∀x(A ∧B)⇔ (∀xA) ∧ (∀xB)

5. ∃x(A ∨B)⇔ (∃xA) ∨ (∃xB)

6. ¬∀xA⇔ ∃x¬A

7. ¬∃xB ⇔ ∀x¬B

8. ∀x(A⇒ B)⇒ (∀xA⇒ ∀xB)

9. ∃x∀yA⇒ ∀y∃xA

10. ∀xA⇔ A

11. ∃xA⇔ A

}
if x is not free in A.

12. (∀xA⇒ B)⇔ ∃x(A⇒ B)

13. (∃xA⇒ B)⇔ ∀x(A⇒ B)

}
if x is not free in B.

14. (A⇒ ∀xB)⇔ ∀x(A⇒ B)

15. (A⇒ ∃xB)⇔ ∃x(A⇒ B)

}
if x is not free in A.

171

172 APPENDIX B. VALIDITIES IN FIRST ORDER LOGIC

16. x = x

17. (x = y ∧ y = z)⇒ (x = z)

18. x = y ⇒ y = x

19. (y1 = z1 ∧ · · · ∧ yn = zn)⇒ (f(y1, . . . , yn) = f(z1, . . . , zn))
(f any n-ary function symbol)

20. (y1 = z1 ∧ · · · ∧ ym = zm)⇒ (R(y1, . . . , ym)⇔ R(z1, . . . , zm))
(R any m-ary relation symbol)

